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Abstract

In this paper we examine representative examples of realistic three-dimensional models for
porous media by comparing their geometry and permeability with those of the original exper-
imental specimen. The comparison is based on numerically exact evaluations of permeability,
porosity, speci/c internal surface, mean curvature, Euler number and local percolation prob-
abilities. The experimental specimen is a three-dimensional computer tomographic image of
Fontainebleau sandstone. The three models are stochastic reconstructions for which many of the
geometrical characteristics coincide with those of the experimental specimen. We /nd that in
spite of the similarity in the geometrical properties the permeability and formation factor can
di3er greatly between models and the experiment.
c© 2002 Elsevier Science B.V. All rights reserved.
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A better understanding of #uid #ow in porous media underlies many unsolved prob-
lems in the applied and engineering sciences ranging from geosciences [1,2] and
petroleum engineering [3,4] to contaminant transport [5,6] and paper manufacturing
[7]. Despite many years of research there is still no agreement on the basic ques-
tion namely which macroscopic geometrical observables besides porosity are needed to
predict macroscopic transport parameters such as the permeability of a given porous
microstructure [8–10].
Most works on transport through porous media assert the validity of a speci/c

model for the porous microstructure and proceed by calculating physical properties
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for the model rather than for the original microstructure itself [11–13,3]. A multi-
tude of porous media models have been proposed that may be roughly divided into
reconstruction models, that attempt to reconstruct a realistic three-dimensional pore
structure [14], and non-reconstruction models, such as the classical capillary tube model
[1] or network models [11,15], that postulate an arti/cial model geometry. In this work,
we report the comparison of exact geometrical and transport properties of three stochas-
tic reconstruction models for Fontainebleau sandstone with those of an experimental
specimen. One of our motivations has been to test the reliability of reconstruction
models that have recently found much attention [16–18]. Reconstruction models are
models that attempt to reconstruct the experimental porous microstructure usually in
a statistical sense [14,10]. Equally important has been our second motivation, namely
to improve the simulated annealing models by including special characteristics of the
porous medium into its geometrical reconstruction process. Motivated by the attempt
to improve the model we present a new reconstruction model.
Direct comparisons between di3erent reconstruction models have, to the best of our

knowledge, not been carried out in the literature. Establishing such direct comparisons
between di3erent models is needed not only for academic research purposes but also for
applications in hydrology or petroleum engineering. In this paper we explore models
for the popular and well-studied example of Fontainebleau sandstone.
Given a porous sample S ⊂ R3, such as a piece of Fontainebleau sandstone, with

pore space P and matrix space M with P∪M=S and P∩M= ∅ we assume that the
internal boundaries (i.e., the di3erence between the closure and the interior) coincide,
i.e., 9P= 9M. Let the porous sample S have the shape of a cube or rectangular par-
allelepiped with sidelengths Li (i = x; y; z), and let it be discretized into cubic voxels
of side length a such that Li = Mia. On the microscopic (pore) scale, the boundary
value problem for stationary creeping #uid #ow of an incompressible Newtonian #uid
reads

	Hv(r)−∇p(r) = 0; r∈P ; (1a)

∇ · v(r) = 0; r∈P ; (1b)

v(r) = 0; r∈ 9P ; (1c)

where v(r) and p(r) denote the microscopic velocity and pressure /elds that may be
extended to all of S by setting them to zero on M.
We have implemented a standard pressure correction algorithm [19] to solve the

Stokes equations in a three-dimensional geometry numerically. For details we refer to
Ref. [20]. The time-consuming step is to solve the Poisson equation for the pressure
correction. We use a successive overrelaxation method for this step. Of course it would
be desirable to use more sophisticated methods as e.g. a multigrid method. But we could
not /nd a general procedure to restrict the microstructure of the porous medium to a
coarser grid without changing the topology of the pore space. We /nd that the speed
of the algorithm is comparable to that of lattice Boltzmann methods [21]. Our spatial
discretization uses a marker-and-cell (MAC) grid. The pressure values are placed in the
center of the grid cells. On each face of a grid cell the velocity component perpendicular
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Table 1
Geometric properties of the four porous samples

EX GF SA SK

� 0.1355 0.1421 0.1354 0.1355
SG (mm−1) 10.42 16.71 11.07 10.42
S (mm−1) 9.99 14.53 11.04 10.21
� (mm−2) −151 −449 −222 −118
E (mm−3) −172 4334 1153 776
p3 (60a) 0.9561 0.3255 0.1695 0.4850

� is the porosity, S is the speci/c surface, � is the mean curvature and E is the Euler number, all
calculated according to the methods in Ref. [30]. SG is the speci/c surface calculated from the slope of
the correlation function. The last row, p3(60a), is the total fraction of subblocks of sidelength L = 60a
that are percolating in all three coordinate directions from local porosity theory [9]. “Percolating in x; y-
or z-direction” means that the subblock contains a path inside the pore space that connects opposite faces
perpendicular to the x; y- or z-direction. The experimentally measured porosity was �∗ =0:1484 (see text).

to this face is located. The pore-matrix-interface 9P is assumed to coincide with the
surface of the cubic grid cells.
The macroscopic permeability tensor is evaluated as follows. First, the microscopic

pressure and velocity /elds are obtained by solving the boundary value problem (1)
with a pressure gradient applied along the x-direction. Let Kpx0 denote the inlet pressure,
i.e., the pressure applied to the plane x=0, and let KpxL denote the outlet pressure, i.e.,
the #uid pressure applied at the plane x = Lx, where Lx = Mxa denotes the distance
between the inlet and the outlet. Then the /rst row of the macroscopic permeability
tensor is obtained from Darcys law as

kx = (kxx; kxy; kxz) =
	Lx

Kpx0 − KpxL
Kv ; (2)

where the macroscopically averaged velocity is de/ned as

Kv =
1
|S|

∫
S
v(r) dr (3)

and |S| denotes the volume of the set S. The second and third rows of the perme-
ability tensor are obtained analogously by applying a pressure gradient along the y- or
z-direction.
We consider the above boundary value problem for four particular porous samples

EX;GF;SA and SK. The sample EX is a three-dimensional computer tomographic im-
age of a Fontainebleau sandstone with resolution a = 7:5 �m and sidelengths Mx =
299; My = 300, and Mz = 300. This sandstone is a popular reference standard because
of its exceptional chemical, crystallographic and microstructural simplicity [22,23]. The
computer-assisted microtomography was carried out on a micro-plug drilled from a
larger original core. The original core from which the micro-plug was taken had a
porosity of �∗=0:1484, a permeability of k∗=1:3D and a formation factor of F∗=22:1.
The porosity �(SEX), of our microtomographic data set (representing a subsample of
the core) is only 0.1355 (see Table 1). The di3erence between the porosity of the
original core and that of the /nal data set is due to the heterogeneity of the sandstone
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and to the di3erence in sample size. The experimental sample is referred to as EX in
the following.
The three other samples are fully three-dimensional stochastic reconstruction models

for the experimental sample EX. The resolution of all models is again a=7:5 �m, and
their size is Mx =My =Mz = 256.

The Gaussian /eld (GF) reconstruction model provides a random pore space con/g-
uration in such a way that its correlation function equals the prescribed reference corre-
lation function of EX. The method of Gaussian /eld reconstruction is well documented
in the literature [24,25,14,26,27]. Given the reference correlation function GEX(r) and
porosity �(SEX) of the experimental sample, the three main steps of constructing the
sample SGF with correlation function GGF(r) =GEX(r) are as follows. First a standard
Gaussian /eld X (r) is generated which consists of statistically independent Gaussian
random variables X ∈R at each lattice point r. Secondly, the /eld X (r) is passed
through a linear /lter which produces a correlated Gaussian /eld Y (r) with zero mean
and unit variance. The reference correlation function GEX(r) and porosity �(SEX) enter
into the mathematical construction of this linear /lter. Finally, the correlated /eld Y (r)
is then passed through a nonlinear discretization /lter which produces the reconstructed
sample SGF. Our implementation of the method follows [14] and is described in detail
in Ref. [27].
The simulated annealing (SA) reconstruction model is a second method to gener-

ate a three-dimensional random microstructure with prescribed porosity and correla-
tion function. The method generates a con/guration SSA by minimizing the deviations
between GSA(r) and a prede/ned reference function G0(r) using a simulated annealing
algorithm based on the Monte Carlo method of statistical physics. An advantage is
that the method is not limited to correlation functions but can be used to reconstruct
other geometric characteristics such as contact distributions [28]. Of course in the sam-
ple prepared here we use only the two-point pixel–pixel correlation function and we
have again the Fontainebleau sandstone as reference, i.e., G0(r) = GEX(r). For further
discussions of the method and its problems see Refs. [29,28].
Finally, the reconstruction model SK is new and we describe it here brie#y. Its

idea is to use the simulated annealing algorithm but to update only a subset of all
voxels. In the present implementation an initial con/guration is constructed as follows.
First, a close packing of hard spheres with diameters uniformly distributed in the
range from 13:6a to 18:4a is produced. The remaining pore space between spheres is
then /lled randomly with matrix voxels until the desired porosity of � = 0:1355 is
obtained. The added matrix voxels in the initial con/guration are declared movable,
while the original matrix voxels in the spheres are immobile. The movable matrix
voxels are updated sequentially in the same manner as in the SA algorithm until a
speci/ed set of geometric observables has been matched exactly. Of course, other
initial con/gurations and another separation into movable and immobile voxels are
possible. In the present implementation we match the two-point correlation function in
thirteen di3erent directions. We choose many directions to improve the isotropy of the
resulting reconstruction. Simpler implementations with fewer directions were found to
be potentially anisotropic [29] depending on the nature of the reconstructed correlation
function. For more details of the model we refer to Ref. [20].
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We collect the basic geometrical properties of the four samples in Table 1. The
/rst row is the porosity �, i.e., the volume fraction of pore space. The second row
gives the speci/c internal surface, i.e., the ratio of internal surface area to sample
volume, measured from the slope of the correlation function according to the formula
SG = −4dS(0)=dr, where S(r) denotes the voxel–voxel correlation function [9]. The
third row is again an estimator for the speci/c internal surface calculated not from
the correlation function but from integral geometric formulae as described in detail
in Ref. [30]. The third row gives the integral of the mean curvature � calculated
recursively according to Hadwigers theory [30], and the fourth row is the Euler or
connectivity number E giving a measure of the number of connectedness compo-
nents per unit volume. A positive sign of � indicates that the matrix space is on
average convex shaped, while a negative number indicates concavity of M. A pos-
itive Euler number E indicates that on average there are isolated components of M
while a negative value indicates the presence of isolated pores. For a detailed de-
scription and the geometric characteristics of the samples EX,DM and SA we refer to
Ref. [27].
The porosity � and the speci/c surface S of all four samples are identical within

the statistical uncertainties or imperfections (in the case of GF) of each method. We
also /nd that the average mean curvature is very similar in all models. We attribute
the fact that it is negative to the creases and sharp corners. A clear di3erence between
EX on the one hand and GF,SA and SK on the other appears for the Euler number E.
A more detailed geometrical analysis [31,27] based on local porosity theory [32–34,9]
reveals that the three models GF,SA and SK are more homogeneous in their geometrical
properties than the experimental sample EX. Furthermore, we /nd di3erences in the
connectivity properties. A /rst indication of this fact can be seen from the value of
the speci/c Euler number E. A clearer view of the phenomenon is obtained using the
total fraction of percolating cells introduced in local porosity theory [32]. The total
fraction of percolating cells gives the fraction of cubic subblocks of sidelength L that
are percolating in all three coordinate directions. A subblock is called percolating in
the x-direction if it contains a path inside the pore space connecting the two opposite
faces of the sample that are perpendicular to the x-direction. In the last row of Table 1
we give the results for the total fraction p3(60a) of percolating cells for all four
samples for measurement cells of size 60a where a is the lattice constant. We /nd
that none of the models matches the values for the original sample EX. Based on the
clear di3erences in connectivity seen in these data, it may be conjectured [27] that the
p3(L) function from local porosity theory is a geometrical indicator for permeability.
We have calculated the exact values of permeability by solving the Stokes boundary

value problem (1) numerically for all four samples. On the sample surface the pressure
is /xed while von Neumann conditions are applied for the velocity. This computation is
a demanding task in terms of computation time and memory. For the above geometries
with up to 27 × 106 grid points, such calculations of k are possible only on parallel
computers. The iterative algorithm for the solution of Eq. (1) was terminated when
the condition maxr∈P |Hv(r) −∇p(r)|¡ 10−6 for the dimensionless left-hand side of
(1a) was ful/lled for the /rst time. Typically, the convergence required between 10 000
and 50 000 iterations in the pressure correction equation for samples EX and SK. The
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Table 2
Permeability for the four porous samples

Permeability (mD) EX GF SA SK

kzz 692 20 35 505
kyy 911 20 22 522
kxx 790 20 20 497
Kk 798 20 26 508
Kk
∗

1150 24 38 731

kii is the permeability in mD in the direction i = x; y; z. The experimentally measured permeability was
k∗ = 1300 mD (see text).

program was run on a Cray T3E with usually 128 processors in parallel, and required
between 1 and 3 h run time. For samples SA and GF on the other hand, the number
of iterations increased by roughly a factor of 10. This was a consequence of the poor
connectivity of the sample.
The /rst three rows in Table 2 give the numerical results for the diagonal elements

kxx; kyy; kzz of the #uid permeability tensor. The o3-diagonal elements were found to be
small. In all cases their numerical value was at least one order of magnitude below the
smallest diagonal element, and hence we neglect them here. The permeabilities of the
simulated annealing SA and Gaussian /eld reconstruction GF are found to be an order
of magnitude smaller than those of EX. This /nding con/rms the geometrical predic-
tions from [27]. It seems as if the stochastic reconstruction models of the two-point
correlation function cannot reproduce the high degree of geometrical connectivity of the
original sandstone. Correct reproduction of the geometrical connectivity however is an
indispensable precondition for reproducing the dynamical connectivity that determines
transport properties. The hybrid model SK gives somewhat better results than SA and
GF. The improved degree of geometrical connectivity is already seen in the value of
p3(60a). Correspondingly, the permeability values of the SK model are found to be
higher than those of SA and GF, but do not quite reach those of the experimental
sample EX. In the fourth row of Table 2, labelled Kk, we give the averages of the
diagonal elements kxx; kyy; kzz.

We can now compare the numerically calculated permeabilities to the experimental
value. The value of the permeability for the original experimental core from which
the later digitized subsample was cut has been measured in the laboratory to be
k∗=1300 mD. Of course this value can di3er substantially from the permeability of the
digitized subsample EX. In fact already the porosity of the original core �∗ = 0:1484
di3ers from that of the digitized sample. There is a well-known experimental correla-
tion between porosity and permeability of Fontainebleau sandstone [23]. It is usually
approximated in the form

k = A�b ; (4)

where A and b are constants (see Ref. [23, p. 46]). In the porosity range of interest
around � ≈ 0:13–0:15 this correlation shows an exponent of b ≈ 4, although it
should be kept in mind that this value is very inaccurate because the experimental data
scatter strongly. The power-law /t in Eq. (4) amounts to /tting a tangent to a general
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correlation of the form log k = f(log�). Moreover, the data are uncertain and scatter
for the same value of � by roughly a factor of 2. Using the rough estimate b ≈ 4
we can extrapolate the numerically measured permeabilities kEX; kGF; kSA; kSK into the
predictions

Kk
∗
i = Kki

(
�∗

�i

)b
; (5)

where i∈{EX;GF;SA;SK} and the constants Ai have dropped out. These predictions
are the corrected values that might be compared with the experimental value of k∗ =
1300 mD. We see that the predicted permeability of the digitized sample EX agrees
very well with the experimental value. It has to be kept in mind that the geometry of the
digitized sample EX is always inaccurate because of the /nite resolution of a=7:5 �m.
Hence a deviation of only 13% in k can be viewed as very good agreement. On the
other hand, the values for the GF and SA models are more than an order of magnitude
too small. The value for SK is again better as expected and falls within a factor
of 2 of the experimental result. Because of the initial conditions in the SK model we
expect this result to depend strongly on the details of the implementation and statistical
#uctuations.
In summary we have analysed geometrical and physical properties of Fontainebleau

sandstone and three reconstruction models. We /nd that the straightforward Gaus-
sian /eld and simulated annealing reconstructions of the correlation function di3er in
many respects from the original sample. The new model SK gives a somewhat better
agreement for the permeability, and connectivity indicators. However, further studies
are necessary to study statistical #uctuations in this result. Our results also show that
numerical solutions of the #ow problems are becoming feasible to investigate the quan-
titative accuracy of geometrical models as well as approximate physical theories. The
correlations between geometry and transport in porous media are in this way becoming
accessible to numerical experiment.
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