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Abstract

Exact numerical solution of the electrostatic disordered potential problem is carried out for
four fully discretized three-dimensional experimental reconstructions of sedimentary rocks. The
measured e3ective macroscopic dielectric constants and electrical conductivities are compared
with parameter-free predictions from several mean !eld type theories. All these theories give
agreeable results for low contrast between the media. Predictions from local porosity theory,
however, match for the entire range of contrast.
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1. Introduction

Quantitative and parameter-free prediction of e3ective macroscopic transport param-
eters for composites, porous media, alloys and other heterogeneous mixtures is a
recurrent unsolved problem of great importance [1,18]. Physical and technological
applications range from hydrocarbon production through catalysis to polymer research.
Some recent works on this problem are the prediction of permeability of !bre webs
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[2], electrical conductivity of porous media [3–5], optical properties of gold deposits
[6], dielectric spectroscopy of con!ned polar materials [7] and silica glasses [8], the
conductivity of composite materials [9], or di3usion in catalysts [10].

Such macroscopic transport coeBcients of two-phase mixtures depend crucially on
the properties of the two constituents and the underlying microstructure. Quantita-
tive prediction is diBcult due to the great variety of di3erent microstructures. Many
unsuccessful attempts have been made to identify those geometric properties of the
microstructure that correlate strongly with the physical transport coeBcients. Simple
mean !eld type theories [11–14] and variational bounds [15,16] correlate the transport
properties with one-point correlation function, i.e., porosity or volume fraction. More
advanced theories include information about higher-point correlations in the microstruc-
ture [17]. Local Porosity Theory (LPT) [1,3,18] includes distributions of local geometric
observables from integral geometry [18–20]. Basic observables such as porosity, spe-
ci!c surface, connectivity and curvature measures (see [20,21]) are evaluated locally in
LPT [1,3,18]. Classical mixing-laws, such as Bruggeman’s e3ective medium equation
or Clausius–Mossotti approximation can be shown to be special cases of LPT [1].

In this work we test the predictions of LPT for the electrical conductivity and dielec-
tric constant through a comprehensive comparison with predictions from many existing
mean !eld type theories and exact results obtained from numerical solution of the dis-
ordered potential problem. The paper is organized as follows: Section 2 summarises
the geometric characterization of porous media in LPT and Section 3 summarises the
e3ective material parameters measured numerically. In Section 4 we discuss some
of the existing classical mixture formulae [1,22,23] and present a short derivation of
the mixing-law based on LPT. In Section 5 we discuss some of the relevant length
scales in LPT. The !nite volume method [24,25] used to calculate the exact e3ec-
tive permittivities and conductivities of sandstones is presented in Section 6 and the
LPT results are compared with those from classical mixture laws in the concluding
Section 7.

2. Local geometric characteristic functions

We de!ne P ⊂ S in R3 to be the pore space of a biphasic porous medium S. The
matrix space M is the complement of P relative to S. The sample S is discretized
into a rectangular parallelepiped (simple cubic lattice) whose sidelengths are M1, M2

and M3 in units of the lattice constant a (resolution of the discretization process). The
total number of voxels in S is N =M1M2M3.

The basic idea of LPT is to measure geometric observables such as porosity, speci!c
internal surface or connectivity within a compact subset of the porous medium and to
collect these measurements into various histograms [3,18]. Within a cubical measure-
ment cell K(r; L) of sidelength L centered at the lattice vector r, the local porosity is
de!ned as

�(r; L) =
V (P ∩K(r; L))
V (K(r; L))

; (1)
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where V (K(r; L)) denotes the volume of a subset K ⊂ R3. The local porosity distri-
bution 	(�; L) is given by

	(�; L) =
1
m

∑
r

�(�− �(r; L)) ; (2)

where m is the number of placements of the measurement cell K(r; L) and �(�−�(r; L))
is the Dirac delta function. Ideally, all measurement cells should be disjoint. In small
samples adequate statistics can be obtained by placing K(r; L) on all lattice sites r which
are at least a distance L=2 from the boundary of S, hence m=

∏3
i=1 (Mi − L+ 1). The

support of the empirical probability density function (histogram) of local porosities
	(�; L) is the unit interval. The average local porosity I�(L) is de!ned as

I�(L) =
∫ 1

0
�	(�; L) d� : (3)

For a homogeneous medium I�(L) is independent of L. The bulk porosity �(S) is
the ratio of the volume of the pore space to the volume of the total sample, i.e.,
�(S) = V (P)=V (S).

The local connectivity properties of the porous medium are quanti!ed as follows.
A measurement cell K(r; L) is percolating in the x-(y-, z-)direction if there exists a
connected path lying inside the pore space within the measurement cell between two
points on the opposite boundary faces of K(r; L) perpendicular to the x-(y-, z-)axis.
The indicator function for the connectivity of a cell is de!ned as

�(r; L) =

{
1 if K(r; L) percolates in all three directions ;

0 otherwise :
(4)

The function �(r; L) is measured using the Hoshen–Kopelman algorithm [26]. The
local percolation probability �(�; L) is de!ned through

�(�; L) =
∑

r �(r; L)���(r;L)∑
r ���(r;L)

: (5)

It gives the fraction of measurement cells of sidelength L with local porosity � that
are percolating in all three directions. Here ���(r;L) is the Kronecker delta. The total
fraction of percolating cells of size L is given by integration over all local porosities,

p(L) =
∫ 1

0
	(�; L)�(�; L) d� : (6)

The function p(L) characterizes the overall connectivity of the sample at length scale
L and is an important parameter for predicting the conductivity of porous media
[1,21,27,28]. limL→∞ p(L) = 0 if P is disconnected while limL→∞ p(L) = 1 if P
is globally connected. As limL→0 �(�; L) = �, from Eq. (3) limL→0 p(L) = I�. Using
this function, the microgeometries of some of these samples have been compared with
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each other [29] and also with stochastic reconstruction models of Fontainebleau
sandstone [30].

3. Electrostatic potential problem for disordered systems

In this work we restrict our attention to calculating the electrical permittivity and
conductivity from a given microstructure. The mathematical formulation, however, is
common to all problems of potential theory for disordered systems including thermal
conduction, magnetostatics and di3usion [18].

The basic equations for the electric displacement vector D(r) and the electric !eld
E(r) in electrostatics are

∇ ·D(r) = 0; E(r) = −∇U (r); D(r) = �(r)E(r); r∈P ; (7)

where U (r) is the electric potential. These equations remain valid for r∈M=S−P.
The position dependent permittivity �(r) (in units of �0, the dielectric permittivity of
the vacuum) is given by

�(r) = �P�P(r) + �M�M(r) ; (8)

where �P and �M are the (isotropic) permittivities of P and M, respectively. The
random microstructure is represented through the indicator function:

�G(r) =

{
1 for r∈G ;

0 for r �∈ G :
(9)

The e3ective permittivity I� is obtained by ensemble averaging of Eq. (7)

〈D(r)〉 = I�〈E(r)〉 : (10)

The microheterogeneous medium is assumed to be stationary and ergodic, therefore the
ensemble average of a !eld f(r) is equivalent to the volume average over the region
G.

〈f(r)〉G =
1

V (G)

∫
G
f(r) dV : (11)

Because the derivative of �(r) does not exist at the internal boundary @P, Eqs. (7)
must be supplemented with appropriate boundary conditions on the stochastic inter-
nal boundary @P. Continuity of normal components of the electric displacement D(r)
requires

n ·D(r)[�P(r) − �M(r)] = 0; r∈ @P (12)

and continuity of tangential components of the electric !eld E(r) requires

n × E(r)[�P(r) − �M(r)] = 0; r∈ @P ; (13)

where subscripts designate the !elds in the regions P and M, respectively, and n is
the unit normal to the surface @P. For the external boundary at the surface @S, a
variety of boundary conditions can be prescribed. The most common one is to specify



J. Widjajakusuma et al. / Physica A 318 (2003) 319–333 323

the values of U (r) and/or the normal component of D(r) at the surface. When the
composite medium and the boundary conditions are macroscopically uniform, the
e3ective permittivity I� is independent of the precise nature of the macroscopic boundary
conditions. Consequently, the particular choice of boundary conditions used in solving
for U (r) does not a3ect the value of I� obtained from Eq. (10). We solve the stochastic
boundary value problem de!ned by Eqs. (7)–(9), (12) and (13) for D(r) and E(r) and
then calculate the e3ective I� from Eq. (10).

4. Mean �eld mixing laws

Some of the widely used classical formulae for the e3ective permittivity of two
component systems are summarised in Table 1. These mixing-laws are functions of the
volume fraction and dielectric constant of each component. Except for the last formula
(Lichtenecker) [12,13], the assumption is that a two-phase medium can be modelled
as spherical grains embedded into a homogeneous background material (for details
see [1,13,22,31,32]). An alternate mixing-law, the local porosity theory (LPT) was
recently proposed [1,3,28,33]. It includes additional microstructure information through
the geometric functions 	(�; L) and �(�; L). A brief derivation of this mixing law is
presented next.

Consider a partitioning of the heterogeneous medium into n cubic cells (K 1; : : : ;Kn)
of side length L. Let

ES(r) = E(r)�K1 (r) + · · · + E(r)�Kn(r) : (14)

denote the exact solution for the electric !eld of the sample S. The volume average
of the electric !eld 〈E(r)〉S is then calculated as

〈E(r)〉S =
1

V (S)

[∫
K1

E(r) dr + · · · +
∫
Kn

E(r) dr
]

=
1

V (S)

n∑
i=1

V (Ki)〈E〉Ki(Pi) ; (15)

where 〈E〉Ki(Pi) is de!ned as the volume average of the electric !eld in the ith cell Ki.
The argument Pi reminds us that the average depends upon the pore-space con!guration
inside the cell. Since the exact geometric description of the pore-space is generally
unknown, it is rarely possible to solve the boundary value problem exactly and compute
the average electric !eld 〈E〉Ki(Pi). An approximate computation can still be made with
the following assumptions.

The porous medium is assumed to be spatially and statistically homogeneous. There-
fore, the average electric !eld 〈E〉Ki(Pi) does not depend on the position of the cell
Ki in the porous medium. Hence, 〈E〉Ki(Pi) ≈ IE(L;Pi) if all cells have the same
shape Ki =K and if this cell is suBciently characterized by the size L. Neglecting the
correlation between cells, we further assume that the pore-space con!gurations Pi in
each cell are statistically independent. This condition will be approximately ful!lled for
L¿� where the correlation length � is de!ned as the length at which the correlation
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Table 1
Existing mean !eld theories (mixing laws) chosen for comparison with LPT

Inclusion shape Mixing formula Methods, references

Spheres I�
�P−�eff
�P+2�eff

+ (1 − I�)
�M−�eff
�M+2�eff

= 0 EMA [11]

Spheres I� = �M
(

2�M+�P+2 I�(�P−�M)
2�M+�P− I�(�P−�M)

)
Clausius–Mossotti (CMM)

Host phase M [22,40]

Spheres I� = �P
(

3�M+2 I�(�P−�M)
3�P− I�(�P−�M)

)
Clausius–Mossotti (CMP)

Host phase P [22,40]

Spheres I�1=3 = I��1=3P + (1 − I�)�1=3M Looyenga (Loo) [14]

Spheres I�−�M
�P−�M

( �P
I�

)1=3 = I� Di3erential e3ective
Medium (DEM) [41]

Arbitrary ln I� = I�ln�P + (1 − I�)ln �M Lichtenecker (Lic) [12]

function decays to 1=e. The correlation function for a homogeneous medium is de!ned
as

G(r0; r) = G(r− r0) =
〈�P(r0)�P(r)〉 − 〈�〉2

〈�〉(1 − 〈�〉) : (16)

For an isotropic medium G(r) = G(|r|) = G(r) with G(0) = 1 and G(∞) = 0.
The second assumption is local simplicity [3]. It assumes that the local pore-space

geometry Pi can be approximated by only a few numbers such as local porosity �i and
the indicator function for the connectivity of the ith cell �i, i.e., IE(L;Pi)= IE(L;�i; �i).
The indicator function � is an essential geometric quantity for conductivity problems
of porous media. It speci!es whether a cell is conducting (�=1) or blocking (�=0).

Due to the above assumption, the spherical coated inclusion can now be used as a
!rst approximation of the pore-space and matrix-space in each cell. We can then solve
the boundary-value problem exactly and obtain the average electric !eld IE(L;�;�) for
each cell. If n= V (S)=V (K) is the number of cells in the partitioning of S, Eq. (15)
reduces to

〈E(r)〉 ≈ 1
n

n∑
i=1

IE(L;�i; �i) : (17)

For each cell consider two concentrical spheres with a central sphere of dielectric
constant �2 and a spherical shell of dielectric constant �1 embedded in a reference
homogeneous medium with permittivity �0. This coated spherical inclusion is subjected
to a constant electric !eld E0 = E0ez (in positive z-direction). Using expansions into
spherical harmonics and demanding continuity of tangential components of E(r) and
normal components of D(r) at |r|= r= r1 (the radius of the shell) and |r|= r= r2 (the
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radius of the core), along with the condition that E → E0 as r → ∞, one obtains the
following solution for the electric !eld E (in cartesian coordinates r = (x; y; z)T)

E(x; y; z) = 3C1
r32
r5
z(xex + yey + zez) −

(
C2 +

r32
r3
C1

)
ez r26 |r|6 r1 ;

(18a)

= −C3ez ; 06 |r|6 r2 ; (18b)

where r2 = x2 + y2 + z2. The coeBcients in Eq. (18) are given by

Ci =
3E0�0"i

(�1 + 2�0)(�2 + 2�1) + 2#(�1 − �0)(�2 − �1)
; (19)

where "1 = (�2 − �1), "2 = −(�2 + 2�1), "3 = −3�1 and #= (r2=r1)3.
Applying the e3ective medium approximation (EMA) or self-consistency approxi-

mation [1,17,23,34,35], we now take the e3ective medium with e3ective permittivity
I� as the reference medium. As a result the volume average of the electric !eld in the
inclusion (the concentric spheres) becomes equal to the average electric !eld in the
whole body. Choosing spherical polar coordinates, substituting �0 = I� and then evaluat-
ing the integral of the electric !eld E over the volume of the coated spheres, we obtain
the average electric !eld IE(L;�;�) of a cell K with porosity � and connectivity � as

IE(L;�;�) = 3E0 I�
(�2 + 2�1) + #(�1 − �2)

(�1 + 2I�)(�2 + 2�1) + 2#(�1 − I�)(�2 − �1)
ez ; (20)

with #=�(1− �) + (1−�)�, �1 =��P + (1−�)�M and �2 =��M + (1−�)�P. For
percolating cells (�= 1) the core is made up of matrix material and the shell is made
up of pore material. Thus, from Eq. (20) one can obtain IE(L;�;�=1) by substituting
�1 = �P, �2 = �M and # = 1 − �. For nonpercolating cells (� = 0) the interior-core is
pore material and the shell is matrix material. Thereby, one replaces �1 = �M, �2 = �P
and #= � in Eq. (20) to obtain IE(L;�;�= 0).

In a real porous medium � and � Nuctuate from one cell to the next. Within LPT,
these Nuctuations are captured by 	(�) and �(�), respectively, and in the lim n → ∞,
the sum in Eq. (17) becomes an integral

〈E(r)〉 ≈
∫ 1

0
	(�; L){�(�; L) IE(L;�;�= 1)

+ [1 − �(�; L)] IE(L;�;�= 0)} d� : (21)

Following a similar procedure we obtain an analogous expression for the average elec-
tric displacement

ID(L;�;�) = 3E0 I�
�1[(�2 + 2�1) + 2#(�2 − �1)]

(�1 + 2I�)(�2 + 2�1) + 2#(�1 − I�)(�2 − �1)
ez : (22)

The derivation of expressions for percolating cells ID(L;�;� = 1) and nonpercolating
cells ID(L;�;� = 0) is straightforward and an analogous equation of Eq. (21) for
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〈D(r)〉 can be obtained. Substituting this and Eq. (21) in Eq. (10) we obtain (after
some algebraic simpli!cation) the following mixing-law of LPT [1,27]:∫ 1

0
	(�; L)�(�; L)

�CS(�P; �M; 1 − �) − �LPT
�CS(�P; �M; 1 − �) + 2�LPT

d�

+
∫ 1

0
	(�; L)[1 − �(�; L)]

�CS(�M; �P;�) − �LPT
�CS(�M; �P;�) + 2�LPT

d�= 0 ; (23)

where

�CS(�P; �M; 1 − �) = �P

[
3�M + 2�(�P − �M)
3�P − �(�P − �M)

]
: (24)

Eq. (23) is solved numerically using a method combining bisection and inverse quadratic
interpolation. For details see [36].

5. Length scales and limits of validity

For a given random medium 	(�; L) and �(�; L) can be measured experimentally
(or numerically). Therefore, the solution of the mixing formula Eq. (23) provides a
family of length scale dependent estimates �LPT (L). Eq. (23), being a generalization of
the e3ective medium approximation (EMA), is not valid in either the lim L → 0 when
local geometries become strongly correlated or for L → ∞ when the local simplicity
assumption fails. The estimated e3ective permittivities are, therefore, expected to be
valid only over an intermediate range of L.

In earlier works on LPT, various length scales relevant to the transport properties
[1,27,28,37] have been studied. Although, some of the geometrical lengths like the
correlation length or the largest grain size are found useful at times, they apparently
have no direct link with connectivity of the microstructure. We introduce below three
basic length scales associated with p(L). Keeping in mind the range of validity of the
EMA, we set the relevant intermediate length scale over which the estimates from LPT
could be tested against estimates from other mixing formulae and exact calculations.

The threshold length Lc is de!ned by

p(Lc) = pc ; (25)

where pc is the percolation threshold. Although, the measurement cells are simple cubic
lattices with pc = 0:3116 (three-dimensional site percolation), within EMA pc = 1

3 .
Because �LPT (L6Lc) = 0 the threshold length Lc can be treated as a lower bound of
the intermediate length scales. Note however, that Lc may not exist for samples with
porosity I�¿pc because limL→0 p(L) = I�.

In such situations, other physical length scales such as the two point correlation
length � can be chosen as the lower bound. At this length scale the local geometries
must be uncorrelated for the EMA to be valid.

The saturation length L� is de!ned as the length at which p(L) approaches its
asymptotic value p(∞) to a given degree of accuracy �. For a percolating sample
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p(∞) = 1 and for a nonpercolating sample p(∞) = 0. L� is de!ned through

L� = sup{L : |p(∞) − p(L)|6 �} (26)

for small enough �¿ 0. The length L� may be equated with the size of the so called
“representative elementary volume” (REV) [38] required for representativity with re-
spect to connectivity. L� represents the size of an averaging (smoothing) region that is
needed to ensure that the Nuctuating microscopic connectivity can be replaced with an
averaged connectivity !eld de!ned on the continuum. The small parameter � controls
the degree of smoothness and for suBciently small �, L� can be treated as an upper
bound of the relevant intermediate range of lengths.

Finally, a percolation length Lp is de!ned from p(L) through

d2p
dL2

∣∣∣∣
L=Lp

= 0 : (27)

Hence Lp is the length around which p(L), which is often sigmoidal in shape, changes
most rapidly from its trivial value p(0)= I� at small L to its other trivial value p(∞)=1
at large L (here the porous medium is assumed globally connected). Geometrically, the
length Lp marks the crossover from local to global connectivity. Note that Lc ¡Lp¡L�
for small enough � and in the intermediate range of lengths the best validity of the
underlying EMA within LPT is expected around this length scale.

6. Exact calculation of e%ective permittivities

The geometrical details of our samples are known within the limits of experimental
resolution. Hence, the Laplace equation with variable permittivity �(r):

∇ · �(r)∇U (r) = 0 (28)

was solved directly for the discretized pore-space of the sandstones. Mixed boundary
conditions were chosen such that a potential gradient is applied across the sample and
the Nuxes are set to zero on the other faces of the sample (@U=@n = 0).

For the equivalent homogeneous e3ective medium, the e3ective permittivity �ex is
determined through the relation:

�ex =
D=A

(Ub − Ua)=l
=

D · l=V
(Ub − Ua)=l

: (29)

Here D =
∫
A � · ∇U d2r is the total electric displacement across the cross-section A

and (Ub−Ua)=l is the potential gradient applied between two opposite faces separated
by a distance l. In a homogeneous medium the numerator and the denominator in
Eq. (29) are equal to 〈D(r)〉 and 〈E(r)〉, respectively. Thus Eq. (29) is equivalent
to Eq. (10).

A control-volume formulation [24,25] is used to discretize and solve Eq. (28)
numerically. This ensures the conservation law Eq. (28) at both the local level (for
each control volume) and the global level (for the whole solution domain). In order to
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maintain the conservation of the Nuxes the sample is subdivided into a number of
nonoverlapping control volumes each of length a (the resolution) to ensure that there
is one control volume surrounding each grid point i. As the starting point we use the
integral form of the Laplace equation Eq. (28) over the control volume∫

V
∇ · �(r)∇U (r) dr = 0 (30)

and transform the volume-integral into the surface-integral by using Gauss’ divergence
theorem∫

S
(�∇U ) · n d2r = 0 ; (31)

where n is the outward unit vector on the control-volume interface. In a three-
dimensional cartesian coordinate system, ∇U · n is approximated in terms of the nodal
(control-volume center) values:

∇U · n ≈ (Uj − Ui)
a

: (32)

The net Nux (�∇U ) ·n through the control volume boundary is the sum of the integrals
over the six control volume faces. Eq. (31) reduces to∑

j

�ij(Uj − Ui)a= 0 ; (33)

�ij =
2�i�j
�i + �j

; (34)

where Ui is the electric potential at grid point i. The permittivity �ij on the surface of
the volume element is approximated as the harmonic mean of permittivity �i and �j
at grid points i and j, respectively. This approximation gives the correct result for the
case �i = 0 or �j = 0 implying that the Nux at the face of an insulator vanishes, as it
should. This system of linear equations Eq. (33) with the given boundary conditions
can be solved by any appropriate solver. The results in this work were obtained by
using a conjugate gradient method with Jacobi preconditioning [39].

7. Results and comparison with approximate calculation

Discretised models of four di3erent sedimentary rocks [29,30] have been analysed
in this work. The three-dimensional (digitized) pore-space representations of these rocks
were obtained experimentally by computerized microtomography. The digitization
represents the samples on a cubic lattice of voxels. Di3erent properties and the
experimentally measured permeability k of these sandstones are summarised in
Table 2.

Using the formulae in Section 2 p(L) is measured for the four samples and plotted
against L (in units of a) in Fig. 1. It was argued in [30] and is con!rmed here that
p(L) contains crucial information about connectivity that allows to predict electrical
conductivity. For all the four samples p(L) is sigmoidal in shape. Using the de!nitions
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Table 2
Properties of samples (sandstones) studied

a(�m) M1 ×M2 ×M3 I� � k Lc Lp L� Le

A 10 95 × 128 × 128 0.3200 2.9 5.5D 4.5 10 ± 1 19.2 9.0
B 30 73 × 128 × 128 0.2470 2.9 20D 8.5 13 ± 1 27.5 12.6
C 10 128 × 128 × 128 0.1775 3.4 1.1D 13.6 17 ± 3 46.9 16.6
D 7.5 300 × 300 × 299 0.1355 4.5 1.3D 24.8 31 ± 3 59.6 28.7

Type of samples: (A) !ne Sst6d, (B) coarse Sst20d, (C) Berea and (D) Fontainebleau, their resolution
a, dimension M1 × M2 × M3, bulk porosity I�, the correlation length �, the experimental permeabilities k,
threshold length Lc, percolation length Lp, saturation length L� with � = 0:025 and the dynamic length Le
(see Eq. (35)) for the four sandstones analysed.

Fig. 1. Total fraction of percolating cells p(L) of the four samples at di3erent measurement cell sizes L (in
the units of lattice constant). The upper dashed line corresponds to p(L=∞)−�=0:975. The lower dashed
line is the percolation threshold for EMA. The arrows point at the percolation length Lp (given inside the
legend in brackets for each sample).

presented in Section 5 we determine the threshold length Lc as the intersection point
between p(L) and pc = 1

3 . The saturation length L� is obtained as the intersection
point between p(L) and the line p(∞) − � with � = 0:025. The percolation length
Lp is obtained by numerically di3erentiating p(L) (see Eq. (27)). The error in the
evaluation of Lp depends on the smoothness of p(L). The estimates of Lp along with
estimates of the errorbars are presented in Table 2. For the samples analysed here,
all these geometrical lengths Lc, L� and Lp depend inversely on the porosity I� (see
Table 2). However, this is not true in general. p(L) can be very di3erent for two
samples with the same average porosities [30]. Such a sample with poor microscopic
connectivity will have larger L� and Lp than one with good connectivity.

In Fig. 2 we have plotted �LPT (L) obtained by solving (23) for in!nite contrast,
i.e., �P=�M = ∞. We have �LPT (L¡Lc) = 0 and �LPT (L¿L�) is nearly constant and
much larger than the exact electrical permittivity �ex obtained by methods described
in Section 6. For comparison purposes we introduce a dynamical length Le de!ned
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Fig. 2. LPT estimate of the electrical permittivity �LPT (L) in the in!nite contrast case for di3erent sandstones.
The corresponding numerically exact e3ective permittivity �ex (in brackets), Le (horizontal arrow) and Lp
(vertical arrow) are shown.

through

�LPT (Le) = �ex : (35)

Le is thus the length at which the exact dielectric constant equals the approximate value
obtained from LPT. The values for Le for the four samples are also listed in Table 2.
It is observed that Le is close to Lp, and hence �LPT (Lp) closely approximates �ex for
these four sandstones.

By virtue of Eqs. (7)–(10), all e3ective permittivities I� depend on the contrast
�P=�M. Therefore, Le de!ned in Eq. (35) also depends on the ratio �P=�M. In the case
of no contrast, �P=�M = 1, the curve �LPT (L) is horizontal, i.e., �LPT (L) = �P = �M for
all L. For contrast close to this lowest value, the curves �LPT (L) are so Nat that it
becomes numerically diBcult to obtain a unique solution of Eq. (35). �LPT (L) and
�ex are measured for various values of contrast and Le is estimated whenever unique
solutions exist. In Fig. 3, these Le are plotted against the ratio �P=�M for all the four
samples. It is seen that Le is nearly constant and approaches the value for the in!nite
contrast. Le is always lower than the percolation length Lp and seems to approach Lp
for increasing contrast. For these four natural sandstones, the exact permittivities for
!ve di3erent contrasts, ranging from �P=�M = 2:0 to �P=�M = ∞, are summarized in
Table 3 for future reference.

Table 4 presents the detailed comparison between the predictions of di3erent mix-
ing formulae and the exact values (�ex) for two choices of contrasts. For the case
�P=�M = 2:0, all of the mixture laws including LPT provide comparably good results.
But as the ratio �P=�M is increased, the predictions from di3erent mixture laws begin to
di3er signi!cantly. Although the samples are fully connected, the e3ective permittivi-
ties calculated from EMA, CMM and Lic vanish in the limit of in!nite contrast. The
reason is that the average porosity of all the four samples are smaller than 1 for CMM
and Lic and less than 1

3 for EMA. Although CMP, Loo, DEM give !nite e3ective
permittivities, the predictions of LPT are in closer agreement with the exact results.
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Fig. 3. The dynamical length Le at which the LPT estimates match with the numerically exact results (see
Section 6) for !ve di3erent contrasts. The dashed line segments on the right indicate the value of Lp for
the samples (in bracket).

Table 3
Numerically exact values (see Section 6) of the electrical permittivity I� at six di3erent contrasts (�P=�M)
for all four samples

�P=�M → 2.0 10.0 18.6681 100.0 10000.0 ∞
A 0.631896 0.252684 0.193043 0.124521 0.104032 0.103796
B 0.599673 0.207937 0.148954 0.081470 0.060319 0.060059
C 0.570113 0.169611 0.112065 0.046674 0.024353 0.024021
D 0.547499 0.147621 0.093615 0.034355 0.013924 0.013584

Table 4
Comparison of estimates of electrical permittivity I� from di3erent mixing laws (Table 1) with the exact
estimates (last row) for low contrast �P=�M = 2:0 and in!nite contrast �P=�M → ∞

!ne Sst6d (A) coarse Sst20d (B) Berea (C) Fontainebleau (D)

�P=�M 2.0 ∞ 2.0 ∞ 2.0 ∞ 2.0 ∞
EMA 0.6342 0 0.6011 0 0.5710 0 0.5473 0
CMM 0.6304 0 0.5987 0 0.5697 0 0.5467 0
CMP 0.6408 0.2388 0.6073 0.1794 0.5762 0.1258 0.5514 0.0839
Loo 0.6354 0.0328 0.6026 0.0151 0.5724 0.0056 0.5486 0.0025
DEM 0.6377 0.1810 0.6044 0.1228 0.5737 0.0748 0.5557 0.0499
Lic 0.6242 0 0.5934 0 0.5655 0 0.5437 0
LPT 0.6387 0.1250 0.6037 0.0786 0.5761 0.0348 0.5472 0.0132
ex 0.6307 0.1038 0.5962 0.0600 0.5699 0.0240 0.5476 0.0136

Finally, we compare the results from di3erent mixing-laws for varying contrast in
more detail for the particular case of the Fontainebleau sample (D). In Fig. 4 we plot
the e3ective permittivities as a function of the contrast for the Fontainebleau sandstone
only. The values for in!nite contrast are shown as horizontal line segments on the right.
This is done for the exact e3ective permittivity and its approximations by mixing laws.
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Fig. 4. The e3ective permittivity I� estimated for di3erent contrasts for the Fontainebleau sandstone (D) from
various mixing laws (abbreviations described in Table 1), LPT and exact value (ex). The horizontal line
segments on the right correspond to the value of the e3ective permittivity I� at in!nite contrast �P=�M = ∞
obtained from di3erent mixing laws. The estimates from EMA, CMM and Lic vanish as �P=�M → ∞.

The solid line with square symbols represents the exact result �ex. The LPT estimates
for di3erent values of the ratio �P=�M are obtained at the percolation length Lp = 31.
The LPT estimates give the closest approximation to the exact values over the full
range of contrasts. Similar agreement is observed for the other three sandstones.

For the four samples available to us and analysed in this paper, LPT provides a rea-
sonable estimate of the electrical permittivity at length Lp obtained from a purely geo-
metrical function p(L) that reNects quantitatively the microscopic connectivity at di3er-
ent length scales. This establishes that 	(�; L) and �(�; L) contain useful
microscopic information that can lead to reasonable prediction of macroscopic trans-
port parameters. This work corroborates the fact that a successful mixing theory must
incorporate quantitative microscopic connectivity information. This conclusion is also
important for geometric modelling of these media as found in [30]. The good agreement
between LPT-estimates at Lp and the exact results suggests to extend the comparison
to the case of hydrodynamic Now and e3ective Nuid Now permeabilities.
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