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a b s t r a c t

A stochastic geometrical modeling technique is used to reconstruct a laboratory scale
Fontainebleau sandstone with a sidelength of 1.5 cm. The model reconstruction is based
on crystallite properties and diagenetic parameters determined from two-dimensional im-
ages. The three-dimensional pore scale microstructure of the sandstone is represented by
a list of quartz crystallites defined geometrically and placed in the continuum. This allows
generation of synthetic µ-CT images of the rock model at arbitrary resolutions. Quanti-
tative microstructure comparison based on Minkowski functionals, two-point correlation
function and local porosity theory indicates that thismodeling technique can providemore
realistic and accurate models of sandstones than many existing techniques used currently.
Synthetic µ-CT images at different resolutions from a laboratory scale model of Fon-
tainebleau sandstone are made available to the scientific community for resolution depen-
dent petrophysical analysis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The pore scale microstructure of porous media correlates strongly with their macroscopic physical properties such
as conductivity, permeability, formation factor, elastic moduli etc. [1,2]. Representative microscopic models have been
frequently employed to make quantitative prediction of the petrophysical parameters and to simulate fluid flow in such
systems [3–11]. A widely used experimental model is the digitized three-dimensional (3D) images obtained from the
microcomputer tomography (µ-CT) procedure [12]. Although it provides reasonably accurate 3D representation of the pore
spacemicrostructure for sandstones, access to such an experimental procedure is both difficult and expensive. Computerized
reconstructed models of porous media have tried to fill this gap as they can be created with information from two-
dimensional (2D) microscopic images. These 2D images can be easily obtained at high resolutions.
The reconstruction of porous media is of great interest in diverse fields, e.g. earth science, engineering, material science,

biology, andmedicine. In recent years several modeling techniques have been developed for reconstruction of digitized rep-
resentations of the rockmicrostructures [5,9,13–19]. Using thesemodels effective physical properties such as elasticmoduli,
electrical resistivity, fluid permeabilities, and constitutive relationships for multiphase flow are computed numerically. For
the accuracy of these predictions, it is crucial that the 3D representation of the underlying pore scale microstructure is as
realistic as possible.
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Several experimental methods for generating 3D pore scalemodels exist currently, e.g., combining a series of 2D sections
(with spacing no less than 10 µm between the planes) [20], using focused ion beam [21] and through non-destructive µ-
CT procedures [22–24]. Several advancements in the computational reconstruction of 3D pore space models have also been
proposed. The conditional simulated annealing (CSA) technique has been used to reconstruct aµ-CT of Berea sandstone [25].
A Poissonian penetrable polydisperse sphere model conditioned by the experimental solid size distribution has been
developed to analyze the percolation of a low porosity Fontainebleau sandstone [18]. Using the two-point statistics, an
exhaustive branching technique is introduced [26]. Using 2D thin sections as training images, a two-point statistics method
is enhanced to multiple point statistics [27]. A method of microstructure reconstruction through pattern recognition using
support vector machine (a statistical learning algorithm for pattern classification and regression) utilizing the 2D micro-
images as training objects has also been developed [28]. A modified Gaussian random field method using convex quadratic
programming has been developed to find the optimal admissible autocorrelation function [29].
In this paper we utilize a continuum geometrical modeling technique [10] to reconstruct the pore scale microstructure

of a laboratory scale Fontainebleau sandstone. The underlying geological process governing the formation of the sandstone,
i.e., the deposition of grains followed by compaction and cementation due to various diagenetic processes are reflected in the
algorithm. Themodel of the sandstone is represented by a list of randomly deposited overlapping quartz crystallites defined
geometrically and placed in the continuum. The properties of these crystallites and their nature of packing are defined in
the model based on the information gathered from 2D images of the modeled rock.
The paper is organized as follows. The modeling method is described in Section 2 and the procedure to obtain synthetic

µ-CT images from the model is described in Section 3. The model implementation along with the model parameters are
discussed in Section 4. A comprehensive microstructure characterization of the model and its comparison with similar
measurements from experimental µ-CT image of the rock and three other standard reconstruction models are presented
in Section 5.

2. The model

We use a continuum geometrical model [10,11,30] originally conceived and used for reconstructing carbonate rock
microstructure. Construction and use of a primordial filter function was a critical component of these earlier implemen-
tations. Themodel has never been used for reconstructing sandstones and a primordial filter function is not needed for such
microstructure. For completeness, we redefine the model for the sandstones and present this below.

2.1. Continuum representation

In this stochastic geometrical model [10,11,30] the sandstone is represented by a random sequence of points decorated
with different types of quartz crystallites. These quartz crystallites are polyhedrons defined geometrically. An element
ωi = (xi, Ri, ai, Ti) of the sequence represents a quartz crystallite of type Ti at spatial position xi ∈ S with an inscribed
sphere of radius Ri and orientation ai. The sample contains g different types of quartz crystallites and a total of N quartz
crystallites.
As in Refs. [10,11], the state space of the sandstone containing N crystallites occupying a bounded region S ⊂ R3 is the

set

ΩN = (S× [Rmin, Rmax] × E× {1, 2, . . . , g})N (1)

of all sequences ω = (ω0, ω1, . . . , ωN) ∈ ΩN with [Rmin, Rmax] ⊂ R1 and E = {x ∈ R3 : |x| = 1}. A probability distribution
Pr on the spaceΩ of sequences further specifies the model [10].

2.2. Sedimentation

The points xi are chosen randomly in S ⊂ R3 and added sequentially if the following overlap condition is satisfied. For
each new point xi, a sphere of radius Ri ∈ [Rmin, Rmax] is chosen randomly and we set Pr(Ωc) = 0 for

Ωc = {ω ∈ Ω : ∃ i, j,O(ωi, ωj) 6∈ (0, λ]} (2)

where the degree of overlap with the sphere at xj is measured by

O(ωi, ωj) =
Ri + Rj − |xi − xj|
Ri + Rj − |Ri − Rj|

. (3)

The parameter λ defines the maximum allowed overlap between two neighboring crystallites. This parameter of the model
is related to the amount of compaction in the underlying diagenesis process. Its value is determined from the 2D images
from the sandstone. The deposition criteria ensures that each newly added crystallite has a finite overlap with at least one
of the existing crystallites, thereby ensuring a fully connected matrix. The total number of points to be deposited for a given
volume is specified by a number density ρ, another model parameter that is also determined from the 2D image. The nature
of the pore scale microstructure and the total porosity of the modeled volume depend on the degree of overlap, the density
of points and the crystallite size distribution.
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Fig. 1. Schematic representation of the modeling procedure and how it incorporates indirectly the underlying diagenetic process in the sandstone. The
deposition of overlapping spheres (sedimentation and compaction) followed by decoration with quartz crystallites (compaction and cementation).

2.3. Diagenesis and compaction

The deposited points are then decorated with quartz crystallites, each of them is a polyhedron defined geometrically by
eighteen intersecting planes. More specifically, a quartz crystallite of type Ti with orientation ai and size di is placed at each
point xi. The sandstone is fully represented by a list of N quadruples (xi, di, ai, Ti). For convergence of the deposition algo-
rithm, the overlap condition in Eq. (2) is defined for spherical volumes associated with each deposited point. This spherical
volume is inscribedwithin the decorated quartz crystallite at that point to retainmatrix connectivity. Further, in this model,
the shape and the size of the decorated crystallites relate to the amount of compaction and cementation in the underlying
diagenetic process. This is determined from image analysis of the available 2D images. The modeling procedure, i.e., the de-
position of associated spheres and their replacement by geometrically defined quartz crystallites are schematically shown
in Fig. 1.

3. Synthetic micro-CT

The sandstonemodel is represented by a continuum list of quartz crystallites defined geometrically. Therefore, themodel
can be discretized at any arbitrary resolution [11]. The discretization process is carried out by subdividing the cubic sample
(sidelength `) into a grid of cubic voxels, each of sidelength aµm. Inside each voxel a set of n3 collocation points, i.e., a
n× n× n cubic sublattice, is placed symmetrically. The voxel is then assigned an integer label:

• m = n3 if all the n3 collocation points fall inside the quartz crystallites. This voxel represents matrix.
• m = 0 if all the n3 collocation points fall outside the quartz crystallites. This voxel represents pore space.
• 0 < m < n3 if m of the n3 collocation points fall inside the quartz crystallites. This voxel represents a combination of
matrix and pore space.

The voxel label m, therefore, represents the density of the matrix volume in it. As a result, the greyscale grid repre-
sentation can be called a synthetic µ-CT image of the sandstone model at the resolution aµm. Further, this image can be
segmented by choosing a suitable threshold mc . In such a binary representation, voxels with label 0 < m < mc are rela-
beled to 0 (pore) and voxels with labelmc ≤ m ≤ n3 are relabeled to 1 (matrix). The accuracy of the synthetic µ-CT can be
increased by increasing n, the number of collocation points in each voxel.
The computational discretization procedure requires us to determine if a given collocation point falls inside any of the

deposited quartz crystallites, i.e., if a point p falls insideGi, i = 1, 2, . . . ,N , whereGi is the quartz crystallite at position xi.
This is described in the next section.

4. Model implementation

Each quartz crystallite type (unit size, unrotated) is defined by eighteen intersecting planes defined by the perpendicular
vectors

ni = Rz(βi) Ry(αi) (e1), i = 1, 2, 3, (4)

ni = Rz(βi) Ry(αi) (−e1), i = 4, 5, 6, (5)

ni = Rz(βi) Rx(αi) (ce2), i = 7, 8, 9, (6)

ni = Rz(βi) Rx(αi) (−ce2), i = 10, 11, 12, (7)

ni = Ry(βi) Rx(αi) (e3), i = 13, 14, 15, (8)

ni = Ry(βi) Rx(αi) (−e3), i = 16, 17, 18. (9)

In other words, each plane is specified by the unit normal n̂i and a point (ni1,ni2,ni3). The scale factor c is a random number
chosen in the interval [1.3, 1.4] that provides the ellipsoidal shape of the quartz crystallites. e1 = (1, 0, 0), e2 = (0, 1, 0)
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and e3 = (0, 0, 1) are the unit vectors of the coordinate axes. The three rotation matrices are defined as

Rx(θ) =

(1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)

Ry(θ) =

( cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

)

Rz(θ) =

(cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
.

The rotation angles αi and βi (in degrees) are chosen randomly in the intervals

α1 ∈ [−5, 5], α2 ∈ [25, 35], α3 ∈ [−35,−25]; βi ∈ [−5, 5], i = 1, 2, 3
α4 ∈ [−5, 5], α5 ∈ [25, 35], α6 ∈ [−35,−25]; βi ∈ [−5, 5], i = 4, 5, 6
β7 ∈ [−5, 5], β8 ∈ [25, 35], β9 ∈ [−35,−25]; αi ∈ [−5, 5], i = 7, 8, 9
β10 ∈ [−5, 5], β11 ∈ [25, 35], β12 ∈ [−35,−25]; αi ∈ [−5, 5], i = 10, 11, 12
α13 ∈ [−5, 5], α14 ∈ [25, 35], α15 ∈ [−35,−25]; βi ∈ [−5, 5], i = 13, 14, 15
α16 ∈ [−5, 5], α17 ∈ [25, 35], α18 ∈ [−35,−25]; βi ∈ [−5, 5], i = 16, 17, 18,

where the minimum and the maximum values are chosen so as to qualitatively match the shape with the quartz crystallites
seen in the experimental image of the rock. At each position xi a quartz crystallite is placed. Its type is chosen randomly
from g different types. The number g of different crystallite types should be as large as possible. For our simple model
here we have chosen g = 99 as a compromise between realism and computational effort. The unit crystallite is scaled by
a factor di and the rotation of the crystallite is implemented through generalized quaternions. For each quartz crystallite
Gi, i = 1, 2, . . . ,N , with the origin of the coordinate axes coinciding with xi, the orientation ai is defined by a sequence of
three rotations of θ1, θ2 and θ3 about the coordinate axes e1, e2 and e3 respectively, i.e.,

ai = Qi3Qi2Qi1 = qi. (10)

The unit quaternionQij represents a rotation of θj about the unit vector ej.
The discretization procedure involves determining if a given point falls inside any of the quartz crystallites. A specific

point p falls inside the crystallite Gi, i = 1, 2, . . . ,N , if

nj ·
(
1
di
p′r − nj

)
< 0, j = 1, . . . , 18 (11)

where nj are the normal vectors that specify Gi, p′r = q−1i (p− xi)(q−1i )
∗ and (·)∗ is the quaternion conjugation.

As described in Section 2, themodel parameters are theminimumandmaximum radii of the spherical volume associated
with each point (Rmin, Rmax), the maximum allowed overlap between two adjacent crystallites (λ), the orientation of the
crystallites ai defined by the three rotation angles θ1, θ2 and θ3 and the point density ρ. We start with a set of initial estimates
of these parameters from the image analysis of a 2D image that is a randomly selected plane from an available µ-CT image
of the Fontainebleau sandstone at 7.5 µm resolution. This image is shown in Fig. 2. We first generate a cubic sample of
sidelength 5 mm to calibrate the model parameters. The reconstructed model is then discretized at 7.5 µm resolution and
thresholded by the Otsu method [31]. The model parameters are then calibrated until the porosity, morphology and other
microstructure statistics from the thresholded image from the model match with those measured from the experimental
µ-CT image at this resolution.
The model parameters tuned by us are Rmin, Rmax and λ. The packing morphology and the final porosity depend on these

parameters. For any specific choice of Rmin and Rmax, the number of deposited crystallites can be increased leading to a
decrease in porosity if the overlap parameter λ is increased. For a fixed λ, porosity can be decreased by choosing a large
Rmax/Rmin. It must be noted that for very large Rmax/Rmin, the algorithm may take prohibitively long time to converge to an
optimal packing of the crystallites as the total number of crystallites will be very large.
The final model parameter values are as follows: Rmin = 80 µm, Rmax = 170 µm, λ = 0.15825. The spherical deposits

are optimally packed and the resulting point density is ρ = 425 spheres/mm3. No specific distribution in the crystallite size
or orientation were observed in the 2D image. So the radius Ri is chosen randomly from the interval [Rmin, Rmax]. The three
rotation angles θ1, θ2 and θ3 (in degrees) are chosen randomly from the interval [−90, 90] degrees. Finally, di = Ri, i.e., the
associated spherical volume is just inscribed within the quartz crystallite defined in Eq. (9).
The model is then discretized at a resolution of 7.5 µm by the method described in Section 3 by choosing n = 6. This

produces a synthetic µ-CT image that is close to an 8-bit greyscale image. A plane from the resulting synthetic µ-CT image,
thresholded by Otsu methods [31], is shown in Fig. 2 showing the qualitative similarity between the morphology of the
continuummodel and that of the original sandstone.
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Fig. 2. 2D sections (2.25 mm× 2.25 mm) from the experimentalµ-CT image of the Fontainebleau sandstone at 7.5µm resolution (left) is compared with
that from the synthetic µ-CT image of the model at the same resolution (right). Pore space is black and matrix is grey.

Table 1
Minkowski functionals and permeabilities measured on the five samples: Experimental µ-CT (EX, 300 × 300 × 299 voxels), continuum model (CM,
3003 voxels), diagenesis model (DM, 2553 voxels), Gaussian filter model (GF, 2563 voxels) and simulated annealing model (SA, 2563 voxels).

Sample Minkowski functionals Permeability (mD)
Porosity Specific surface Mean curvature Total curvature
φ = φ3 (%) φ2 (mm−1) φ1 (mm−2) φ0 (mm−3)

EX 13.55 9.99000 −151.000 −2159.00 1230
CM 13.54 9.36392 −114.830 −1702.09 1182
DM 13.56 10.3047 −194.245 −2765.57 877
GF 14.21 14.5341 −448.961 4333.62 78.19
SA 13.54 11.0363 −221.549 14484.3 88.19

5. Microstructure characterization and comparison

A 2.25 mm × 2.25 mm section of the sandstone model discretization at a resolution of 7.5 µm is compared with the
experimental µ-CT image and also with some of the standard reconstruction models widely used currently. In Ref. [32] the
thresholded experimental µ-CT image of the Fontainebleau sandstone (EX) was compared with a process based diagenesis
model (DM, Refs. [33,34]), a reconstruction model based on Gaussian Filter technique (GF, Ref. [2]) and a reconstruction
model based on Simulated Annealing (SA, Refs. [15,16]). These three models are currently among the standard techniques
used to reconstruct the pore scale microstructure of sandstones. All the three modeling techniques could accurately
reproduce the porosity (Table 1) and the two-point correlation function (Fig. 4) of the original rock at 7.5 µm resolution.
However, as shown in Fig. 3, the morphology of the three models differ significantly from that of the original rock.
Quantitative microstructure measurements based on the local porosity theory [35] on the two stochastic models differed
significantly from that measured on the µ-CT image of the original rock [32]. In spite of the discrepancy in the morphology,
the process oriented modeling approach such as the diagenesis model (DM) was found to be comparatively better than the
two stochastic models [32].
The discretization from the continuum model at the resolution of 7.5 µm is thresholded by the Otsu method [31]. Let

S ⊂ R3 represent this thresholded discretization image (binary voxels placed on a simple cubic lattice) whose sidelength is
M in units of the lattice constant a, the resolution of the discretization process. The two-component porous sample S = P∪M
is the union of two closed subsets P ⊂ R3 andM ⊂ R3 where P denotes the pore space andM denotes the matrix space.
The characteristic (or indicator) function χP(x) of the set P is defined as

χP(x) =
{
1 for x ∈ P
0 for x 6∈ P (12)

where x is the position vector of the voxel on the digitized grid.
We present below a comprehensive quantitative microstructure comparison between the original µ-CT image (EX) and

the four models (CM, DM, GF and SA). All measurements are carried out on a thresholded 300×300×300 binary voxel grid
representation of a section of the modeled rock at the resolution of 7.5 µm.

5.1. Minkowski functionals

Minkowski functionals are quantitative measures of microstructure used widely in mathematical morphology. For
completeness and convenience of the reader, we briefly summarise the general definitions [36] in the Appendix. The four
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Fig. 3. 2D sections from the experimental µ-CT image of the Fontainebleau sandstone at 7.5 µm resolution (top left) is compared with that from the
diagenesis model (DM, top right), Gaussian filter model (GF, bottom left) and simulated annealing model (SA, bottom right) at the same resolution. Pore
space is black and matrix is grey.

Minkowski functionals, φ0 (total curvature), φ1 (mean curvature), φ2 (specific surface), and φ3 (porosity) are computed from
the four models (CM, DM, GF and SA) and the experimental µ-CT image (EX) using the algorithms developed in Ref. [37].
These are listed in Table 1. The four Minkowski functionals from the continuum model (CM) are in reasonable agreement
with that from the µ-CT image. Real quartz crystallites in the Fontainebleau sandstone are of much more complex shape
than the simple geometrical definitions of the quartz crystallites adopted in our model. Since the grains in the model are
defined by 18 cutting planes, their surface roughness differs from the grains in the original rock. The observed discrepancy
is likely because of this. Nevertheless, compared to the other three reconstruction models, the four Minkowski functionals
measured from the continuummodel are in better agreement with that from the µ-CT image of the rock.

5.2. Two-point correlation function

Assuming homogeneity, the directional two-point correlation functions Ci(r) are defined as

Ci(r) =
〈(χP(x)− φ)(χP(x+ rei)− φ)〉

〈(χP(x)− φ)2〉
(13)

where φ is the porosity of the sample and i = 1, 2, 3. Their average is C(r) =
∑3
i=1 Ci(r).

Two-point correlation function along with the porosity are the two most widely used morphological measures for
digitized porous media. The slope of the tangent drawn at C(0) provides a rough estimate of the specific surface area of
the solid/void and is related to the permeability of the sample [35]. Because of this reason, stochastic models [2,15,16] have
focused on matching the porosity and the two-point correlation functions measured from 2D images of the rock with 3D
digitized representation of the rock at a specific resolution.
Two-point correlation functions computed from the four models (CM, DM, GF and SA) and the experimentalµ-CT image

(EX) are plotted in Fig. 4. Over the entire range, the continuum model (CM) and the simulated annealing model (SA) show
reasonable agreement with that from the µ-CT image of the rock. It is important to note that SA model is based on the
exchange of pore and matrix voxels until a target two-point correlation function is achieved. In the continuum model the
match of the porosity (Table 1) and the two-point correlation functions are achieved by adjusting the model parameters.
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Fig. 4. Averaged directional two-point correlation functions computed from the four reconstruction models compared with that from the µ-CT image of
the rock.

At short range, the process oriented diagenesis model also shows reasonable agreement with the original rock. The
discrepancy at longer range is due to the anisotropy of the diagenesis model in the z-direction. As shown in Fig. 3, match
of the porosity and two-point of correlation function is not sufficient to match the morphology. Among the four models
compared here with the original rock, the morphology of the continuummodel is closest to the original rock. Although the
model appears to be far better for the sandstonemicrostructuremodeled here, the other threemodels may bemore suitable
for different classes ofmicrostructure. All thesemodels span adifferent subset of the vast number of possiblemicrostructures
which can arise in nature.

5.3. LPT measurements

A more rigorous scale dependent quantitative microstructure comparison is carried out using Local Porosity Theory
(LPT) [1,38]. The usefulness of thismethod inmicrostructure characterization of digitized porousmedia has been established
earlier, e.g., comparison of µ-CT images of different sandstones [39] and comparison of 3D models of sandstones with the
original [32]. In this method one measures geometric observables such as porosity or connectivity within a compact subset
of the porousmedium and collect thesemeasurements into various histograms. For the convenience of the reader we briefly
repeat the basic definitions of the quantities used in LPT to characterize the porosity and connectivity fluctuations at different
length scales in 3D digitized models [35,36].
Within a cubic measurement cell K(r, L) of sidelength L centered at the lattice vector r, the local porosity is defined as

φ(r, L) =
V (P ∩ K(r, L))
V (K(r, L))

(14)

where V (K(r, L)) denotes the volume of a subset K ⊂ R3. The local porosity distribution µ(φ, L) is given by

µ(φ, L) =
1
m

∑
r
δ(φ − φ(r, L)), (15)

where m is the number of placements of the measurement cell K(r, L) and δ(φ − φ(r, L)) is the Dirac delta function. For
adequate statistics K(r, L) are placed on all lattice sites rwhich are at least a distance L/2 from the boundary of S.
A measurement cell K(r, L) is termed percolating in the x- (y-, z-) direction if there exists a connected path lying inside

the pore space within the measurement cell between two points on the opposite boundary faces of K(r, L) perpendicular
to the x- (y-, z-) axis. The connectivity function is defined as

Λc(r, L) =
{
1 : if K(r, L) percolates in c direction
0 : otherwise. (16)

The function Λc(r, L) is measured using the Hoshen–Kopelman algorithm [40]. The local percolation probability λc(φ, L) is
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Fig. 5. Local porosity distributions computed from the four reconstructed models compared with that measured from the µ-CT image of the rock. The
comparison is presented for two selected sizes of the measurement cells, namely L = 32 and L = 64 voxel units. Sidelength of the voxel is 7.5 µm.

defined through

λc(φ, L) =

∑
r
Λc(r, L)δφφ(r,L)∑

r
δφφ(r,L)

. (17)

It gives the fraction ofmeasurement cells of sidelength Lwith local porosityφ that are percolating in c direction. Here δφφ(r,L)
is the Kronecker delta. The total fraction of percolating cells of size L is given by the integration over all local porosities,

pc(L) =
∫ 1

0
µ(φ, L)λc(φ, L) dφ. (18)

The local percolation property is closely correlated with transport properties such as permeability or conductivity as was
first pointed out in Ref. [32] and later verified in Ref. [41] for sandstones. It has been systematically used in Ref. [18] for
analyzing percolation properties of Fontainebleau sandstone.
Quantities defined in Eqs. (15), (17) and (18) are measured on the four reconstruction models and on the experimental

µ-CT image from the original rock. In Fig. 5 the local porositymeasurementsµ(φ, L) are compared for two selected values of
L. At each of thesemeasurement cell sizes the local porosity distributions from the continuummodel show the closestmatch
with that measured from the µ-CT image of the rock. The process oriented diagenesis model differs significantly from the
original rock because of the grain size distribution. The pore sizes correlate strongly with the grain sizes. In the diagenesis
model (DM) the grain sizes have small polydispersity compared to the original rock (Fig. 3).
In Fig. 6 the local percolation probabilities λ3(φ, L) are compared for the same values of L. At each of these measurement

cell sizes, the local percolation probabilities (in all three directions) from the continuummodel show the closest match with
that measured from theµ-CT image of the rock. Equally good agreement is observed for p1(L) and p3(L) for all measurement
cell sizes as shown in Fig. 7. Both the stochastic reconstructionmodels (GF and SA) show large discrepancy in comparison to
the original rock. These models are based on the two-point correlation function match. Generally the two-point correlation
function does not reflect connectivity, in particular not at scales above the correlation length, i.e., between100µmto150µm
(Fig. 4). In Fig. 6 the measurement cell sizes are 240 µm and 480 µm at which the sample has no correlation, therefore is
a standard percolation model. Since the porosity is much below the percolation threshold of site percolation, most of the
measurement cells are not connected.
The above analysis suggests that at the resolution of 7.5µm, the pore scale microstructure of the modeled rock matches

(quantitatively) very well with that of the experimental µ-CT image. This is further confirmed by the comparison of the
absolute permeabilities computed on these five samples (Table 1). The absolute permeabilities are computed by a D3Q19
Lattice-Boltzmann single relaxation time method using Darcy’s law [42].
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Fig. 6. Local percolation probabilities computed from the four reconstructed models compared with that measured from the µ-CT image of the rock. The
comparison is presented for two selected sizes of the measurement cells. For each sample the curve on the right is for L = 32 voxel units and the curve on
the left is for L = 64 voxel units. Sidelength of the voxel is 7.5 µm.
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Fig. 7. Total fraction of the percolating cells for the experimental µ-CT image and the four reconstruction models. The quantity p1(L) plotted on the left
corresponds to percolation in any one direction of the measurement cells. The quantity p3(L) plotted on the right corresponds to percolation in all three
directions of the measurement cells.

6. Conclusion

In this work we propose a continuum geometrical modeling approach for reconstruction of 3D pore scale models of
sandstones. The method is tested by reconstructing realistic synthetic µ-CT images of the Fontainebleau sandstone at arbi-
trary resolutions. At a resolution of 7.5 µm, quantitative microstructure measures from the model show impressive match
with that measured from the experimental µ-CT image. Both in terms of the morphology and the quantitative microstruc-
ture statistics, the continuum model is found to be superior to three other standard reconstruction models. The absolute
permeability measured from themodel also shows equally good agreement with that measured on the experimental image.
The main shortcomings of the continuummodel lie in the geometric definition of the quartz crystallites and their nature

of overlap. For modeling simplicity, the quartz crystallites are defined by eighteen cutting planes. For fast convergence, the
deposition of the crystallites are carried out by first depositing associated spheres (overlapping) and then replacing them
by the quartz crystallites. Compared to the real rock, this procedure leads to somewhat unrealistic packing and orientation
of the crystallites in the model. Overcoming this requires process oriented realistic deposition of geometrical objects that
closely resemble the quartz crystallites in the original rock. A feasible algorithm for depositing a large number of polydisperse
complex shaped overlapping crystallites is not available at this point of time.
Nevertheless, the proposed continuummodeling approach is simple and reproduces themorphology and the quantitative

microstructure of the original rock with reasonable accuracy. A major strength of this modeling technique over many
standard modeling approaches is the possibility of resolution dependent analysis. The synthetic µ-CT images of the model
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Fig. 8. Left: A laboratory scale cubic sample (sidelength 1.5 cm) generated by the continuum modeling technique. Right: A thin section from the same
sample.

Fig. 9. Syntheticµ-CT images from the model at the resolutions of 120µm (top left), 60µm (top middle), 30µm (top right), 15µm (bottom left), 7.5µm
(bottom middle) and 3.75 µm (bottom right) showing the gradual resolution of the crystallites. The images are of size 3 mm× 3 mm.

can be generated at arbitrary resolutions. Because it is not simulated on a grid, pore scale models of large sandstone core
plugs can be generated easily. Higher resolution syntheticµ-CT images of themodel can be used formore accurate prediction
of the petrophysical parameters of the rock.

7. Laboratory scale model

A laboratory scale model of the Fontainebleau sandstone is generated using the calibrated model parameters. The
modeled cubic sample has a sidelength 1.8 cm and contains approximately 1.02 × 106 quartz crystallites. A cubic section
of sidelength 1.5 cm is cropped from the center of this volume to eliminate the boundary effects. This is shown in Fig. 8.
Synthetic µ-CTdiscretizations of this cubic volume of sidelength 1.5 cm at resolutions of 120 µm, 60 µm, 30 µm, 15 µm,
7.5µm and 3.75µm are made available to the scientific community at http://www.icp.uni-stuttgart.de/~hilfer/forschung/.
The crystallites are better resolved with increasing resolution as shown in Fig. 9. These noisefree greyscale 3D µ-CT images
can be used for studying the dependence of petrophysical properties on the resolution of discretization and also on the
method of digitization.

http://www.icp.uni-stuttgart.de/~hilfer/forschung/
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Appendix. Minkowski functionals

An observable f is a mapping that assigns to each admissible pore space P a real number f (P) = f (P∩ S). If this number
can be calculated from Pwithout solving a physical boundary value problem, then f (P) is a geometrical observable. The set
R of admissible P is defined as the set of all finite unions of compact convex sets [43,44]. The set of all compact and convex
subsets of Rd is denoted as K . Examples of geometric observables are the volume of P or the surface area of the internal
boundary ∂P = ∂M = P ∩M. Let

Vd(K) =
∫

Rd
χP(r)ddr (A.1)

denote the d-dimensional Lebesgue volume of the compact convex set K. The volume is hence a functional Vd : K → R on
K . An example of a compact convex set is the unit ball Bd = {x ∈ Rd : |x| ≤ 1} = Bd(0, 1) centered at the origin 0 whose
volume is

κd = Vd(Bd) =
πd/2

Γ (1+ (d/2))
. (A.2)

Other functionals onK can be constructed from the volume by virtue of the following fact. For every compact convexK ∈ K
and every ε ≥ 0 there are numbers Vj(K), j = 0, . . . , d depending only on K such that

Vd(K+ εBd) =
d∑
j=0

Vj(K)εd−jκd−j (A.3)

is a polynomial in ε. This result is known as Steiners formula [43,44]. The numbers Vj(K), j = 0, . . . , d define functionals
onK similar to the volume Vd(K). The quantities

Wi(K) = κi Vd−i(K)
[(
d
i

)]−1
(A.4)

are called quermassintegrals [45]. From (A.3) one sees that

lim
ε→0

1
ε
(Vd(K+ εBd)− Vd(K)) = κ1Vd−1(K), (A.5)

and from (A.2) that κ1 = 2. Hence Vd−1(K) may be viewed as half the surface area. The functional V1(K) is related to the
mean widthw(K) defined as the mean value of the distance between a pair of parallel support planes of K. The relation is

V1(K) =
dκd
2κd−1

w(K) (A.6)

which reduces to V1(K) = w(K)/2 for d = 3. Finally the functional V0(K) is evaluated from (A.3) by dividing with εd and
taking the limit ε → ∞. It follows that V0(K) = 1 for all K ∈ K \ {∅}. One extends V0 to all ofK by defining V0(∅) = 0.
The geometric observable V0 is called the Euler characteristic.
For a 3D porous sample with P ∈ R the extended functionals Vi lead to the geometric observables known as Minkowski

functionals. The first is the porosity of a porous sample S defined as

φ(P ∩ S) = φ3(P ∩ S) =
V3(P ∩ S)
V3(S)

, (A.7)

and the second is its specific internal surface area which may be defined in view of (A.5) as

φ2(P ∩ S) =
2V2(P ∩ S)
V3(S)

. (A.8)

The two remaining observables, the mean curvature φ1(P ∩ S) = V1(P ∩ S)/V3(S) and the total curvature φ0(P ∩ S) =
V0(P ∩ S)/V3(S) have received less attention in the porous media literature.
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