Categories
Fraktionale Infinitesimalrechnung Funktionalanalysis Gläser Mathematik Mathematische Physik Spezielle Funktionen

Fraktionale glasartige Relaxation und Faltungsmodule von Distributionen

T. Kleiner, R. Hilfer

Analysis and Mathematical Physics 11, 130 (2021)
https://doi.org/10.1007/s13324-021-00504-5

eingereicht am
Mittwoch, 30. September 2020

Die Lösung fraktionaler Relaxationsgleichungen erfordert präzise charakterisierte Definitionsbereiche der fraktionalen Differential- und Integraloperatoren. Die Bestimmung dieser Definitionsbereiche ist ein altbekanntes Problem. Anwendungen erfordern in der Regel deren Erweiterung von Funktionen auf Distributionen. In dieser Arbeit werden für vorgebene Mengen von Distrubutionen Faltungsmodule konstruiert, die eine distributionelle Faltungsalgebra erzeugen. Faltungsinversion der fraktionalen Gleichungen führt auf eine breite Klasse von Mittag-Leffler-artigen Distributionen. Deren Asymptotik wird eingehend analysiert. Die asymptotische Analyse kombiniert mit der Modulkonstruktion ergibt Bereiche von Distributionen, welche Existenz und Eindeutigkeit der Lösung der fraktionalen Differentialgleichung garantieren. Diese mathematischen Ergebnisse werden auf anomale dielektrische Relaxation angewandt. Ein analytischer Ausdruck für die frequenzabhängige dielektrische Suszeptibilität wird für Fits der Breitbandspektren von Glyzerin verwendet. Das Ergebnis enthüllt einen temperaturunabhängigen dynamischen Skalenexponenten.



Weitere Informationen unter