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Zusammenfassung

Computer Simulationen sind ein wichtiges Werkzeug für Systeme, in denen es an analy-
tischen Lösungen fehlt. Dank der immer weiter steigenden Rechenleistung und der Opti-
mierung einer immer weiter wachsenden Zahl von Simulationsmethoden können wir immer
komplexere and größere Systeme simulieren. Ein Themenfeld in dem Simulationen oft ge-
nutzt werden ist das der Weichen Materie. Weiche Materie Systeme werden von Interaktio-
nen beherrscht, die sich im Bereich der Thermischen Energie befinden, das heißt Entropie
ist ein wichtiger Teil dieser Systeme. Synthetische Materialien, wie Plastik, aber auch or-
ganische Substanzen, wie Desoxyribonukleinsäure (DNS), Ribonukleinsäure (RNA) oder
Proteine, sind ebenfalls Polymere, die in das Gebiet der Weichen Materie fallen. Gele,
Gummi, Flüssigkristalle und kolloidale Suspensionen gehören auch zum Feld der Weichen
Materie. Das Verständnis um die räumliche Struktur und Dynamik von Proteinen trägt
maßgeblich zum Verstehen ihrer Funktion bei [14]. Das Falten von Proteinen ist eine wich-
tige Mechanik in jedem Organismus. Die Ansammlung von missgefalteten Proteinen ist
Bestandteil von verschiedensten Krankheiten [8]. Biomoleküle wie Proteine oder DNS sind
daher ein wichtiger Forschungsgegenstand.
Die Fähigkeit das Verhalten von DNS zu simulieren kann helfen neue Methoden zu finden
um zum Beispiel DNS zu sequenzieren. Das Falten von Proteinen besonders für Methoden,
bei denen mikrofabrizierte Geräte genutzt werden, spielen Simulation eine wichtige Rolle
[20]. Eine aktuell vielversprechende Methode ist die Sequenzierung von DNS mithilfe von
Nanoporen, hier wird die DNS durch eine Nanopore transportiert, was den Ionenstrom
durch die Pore beeinflusst. Kann man diesen Ionenstrom in die Sequenz der DNS überset-
zen, ergibt sich die Möglichkeit schnell und einfach DNS zu sequenzieren. Aksimentiev [1]
gibt eine gute Übersicht über dieses Thema. Solche Systeme wurden mit Moleküldynamik-
Simulationen untersucht [2] [18], aber es wurden auch Modelle, in denen Teile des Systems,
wie das Lösemittel, nur implizit beschrieben sind, genutzt [30].
Für Weiche Materie Systeme müssen Hydrodynamik, Diffusion und Elektrostatische Kräf-
te für eine große Menge von Atomen korrekt gelöst werden, was dazu führt, dass wir trotz
des technologischen Fortschritts nur eher kleine Biomoleküle simulieren können. Modelle,
in denen das Lösungsmittel, zum Beispiel Wasser, nur implizit beschreiben wird, benötigen
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CHAPTER 0. ZUSAMMENFASSUNG

deutlich weniger Rechenleistung und können es ermöglichen größere Systeme für längere
Zeiträume zu simulieren. Die Lattice Boltzmann Methode ist eine oft benutzte Kontinuum
Methode, die für Weiche Materie Systeme die Navier-Stokes Gleichungen reproduziert und
damit die Hydrodynamik auf billige Weise implementiert. Ein großes Problem stellen die
unterschiedlichen Längen- und Zeitskalen da, die in Systemen mit Partikeln unterschied-
lichster Größe, wie zum Beispiel Ionen und Monomere in einer Polyelektrolyte Simulation,
auftreten. Eine Möglichkeit dieses Problem zu lösen ist die Ionen auch mit einer Kontinu-
umsmethode zu behandeln.
Diese Arbeit baut auf eine Methode auf, die zuerst von Capuani et. al. [4] vorgeschlagen
wurde und von Rempfer [24] in ESPResSO implementiert wurde. Mit dieser Implemen-
tierung wurden bereits erfolgreich Systeme wie die Elektrophorese einer geladenen Kugel
simuliert [17]. ESPResSO ist ein Software Paket, das hauptsächlich am Institut für Com-
puterphysik der Universität Stuttgart von der Forschungsgruppe von Prof. Dr. Christian
Holm entwickelt wird [3] [19].
In den folgenden Kapiteln wird zunächst das von Rempfer implementierte Modell erklärt
und anschließend um die Thermalisierung der Ionen Ströme erweitert, die bisher nicht ent-
halten war, aber in Weiche Materie Systemen eine Rolle spielt. In Kapitel 2.4 leiten wir
den Term für die thermischen Fluktuationen, ausgehend von der unkorrelierten Brownschen
Bewegung der individuellen Teilchen, her und stellen eine Gleichung für die Evolution der
Dichte auf. Wir implementieren eine neue Diskretisierung in Kapitel 3 und validieren diese
und den neuen Fluktuationsterm in Kapitel 5. In Kapitel 6 wiederholen wir Polymer Simu-
lation von Schoell [27], um zu überprüfen, ob die Thermalisierung der Ionen die Ergebnisse
beeinflusst. Danach werden Probleme des Modells und deren Auswirkung auf die Polymer
Simulationen diskutiert. Wir beenden die Arbeit mit einer kurzen Zusammenfassung der
Ergebnisse und einem Ausblick für zukünftige Arbeiten.
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Chapter 1

Introduction

Computer simulations are an important tool for any system or field which lacks analytical
solutions. With the exponential increase in computational power and an ever increasing
amount of simulation methods we are able to model and simulate bigger and more compli-
cated systems. A popular field in which simulations are utilized is soft matter. Soft matter
systems are governed by interactions in the range of the thermal energy, which means en-
tropy plays an important part to properly simulate them. Synthetic materials, like plastics,
but also any organic substances, such as DeoxyriboNucleic Acid, RiboNucleic Acid, or
proteins consist of polymers which fall into this research field. Gels, rubbers, liquid crys-
tals, colloidal suspensions, all fall into the field of soft matter. Understanding for example
the conformational dynamics of proteins is important to explain how they function [14].
The folding and unfolding of proteins is a very important mechanic in any living system
and aggregations of misfolded proteins are a common feature in several debilitating dis-
eases [8]. The importance of these biomolecules makes them a crucial research topic.
Being able to simulate the behaviour and dynamics of DNA can help with finding new
or improving methods to separate or sequence DNA. Especially for the development of
methods making use of micro-fabricated devices computational physics have played an
important part [20]. A promising method is using nanopores to sequence DNA, here the
modulations in ionic current caused by DNA moving through a nanopore are analysed. If
we were able to translate these currents into the sequence of the DNA, we would be able to
easily read out the DNA of any organism. An overview over this topic can be found in Ak-
simentiev [1]. This type of system has been investigated with atomistic and coarse-grained
Molecular Dynamics simulations [2] [18] but also using models with implicit solvents [30].
Complex systems like these require correctly modeling diffusion, hydrodynamic and elec-
trostatic interactions for a large amount of atoms and while technology has improved we
still can only simulate very small biomolecules on the atomic level. Modeling the sol-
vent of such a system implicitly is a potent way to reduce computational cost, which is

1



CHAPTER 1. INTRODUCTION

limiting all-atom simulations. A particular successful approach in this context is the Lat-
tice Boltzmann method, which is a lattice based continuum method that reproduces the
Navier-Stokes equations in limits usually valid for soft matter systems. While this allows
the inclusion of hydrodynamics in computational cheap way, it does not solve the problem
of very different time and length scales in systems that feature differently sized particles
such as ions and coarse-grained monomers in a polyelectrolyte simulation. Treating the
ions using a continuum description as well can solve this problem.
This thesis builds on a method first proposed by Capuani, Pagonabarraga and Frenkel
in 2004 [4] which was later implemented by Rempfer [24] into the Extensible Simulation
Package for Research on Soft Matter (ESPResSo). This electrokinetic solver was already
successfully applied to different systems such as the Electrophoresis of a charged sphere
[17]. ESPResSO is a software package mainly developed by Prof. Dr. Christian Holm’s
resarch group at the institute for Computational Physics at the University in Stuttgart [3]
[19].
In the following chapters we give a brief overview over the model implemented by Rempfer
and proceed by adding the thermalisation of the ion fluxes, which was so far missing from
the model but can play an important role in soft matter systems. In Chap. 2.4 we derivate
the noise term starting from uncorrelated Brownian motion for the individual particles and
establish an equation for the evolution of the density following [5]. We also implement a
new discretization stencil in Chap. 3 and after verifying the behaviour of the newly added
fluctuations in Chap. 5 we revisit polymer simulations done by Schoell [27] in hopes of
improving the results. Afterwards we will analyse existing problems with the model and
close with a short summary and outlook in the last chapter.
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Chapter 2

The Electrokinetic Model

2.1 The Electrokinetic Equations

This thesis builds upon the Electrokinetics feature of ESPresSo implemented by Rempfer
[24]. The systems we treat with this feature consist of one or more diffusive species and
a fluid, a simple example would be any salt dissolved in water. Through electrostatic and
hydrodynamic interactions the diffusive species and the fluid, can be coupled to explicitly
simulated MD particles, thus allowing us to simulate complex systems such as DNA dis-
solved in a fluid with added salt.
The following explanation of the theory behind it is mainly taken from [24]. We consider a
system of one or more diffusive species in a fluid. In this continuum description we define
a scalar number density field pk(r, t) and density flux jk(r, t) for every species k. The flux
consists of terms caused by diffusion and by advection

jk = jadv.k + jdiff.k . (2.1)

The time evolution of the density is governed by the continuity equation

∂nk
∂t

= −∇ · jk, (2.2)

which ensures mass conservation if satisfied locally. In order to derive the diffusive flux
jdiff.k we treat the species as an ideal gas with added electrostatic interactions. In this
description we can obtain the local free energy and define the diffusive flux in terms of a
thermodynamic potential. We start by defining the local free energy f of the system as

f(ck(r) =
∑
k

kbTck(r)[log (Λ3
kck(r))− 1]︸ ︷︷ ︸

ideal gas contribution

+ zkck(r)Φ(r)︸ ︷︷ ︸
electrostatic

(2.3)

with the Boltzmann constant kb, temperature T , de Broglie wavelength Λ, charge of a
particle qk and the electrostatic potential Φ.
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CHAPTER 2. THE ELECTROKINETIC MODEL

The diffusive flux can be seen as a drift towards local equilibrium and can therefore be
expressed through a thermodynamic driving force. The chemical potential µk(r) is the
associated thermodynamic potential. The diffusive flux can be written as

jdiff.k = −νk · nk∇µk, (2.4)

where νk is the mobility. Together with

µk(r) =
∂f(nk)

∂nk
(2.5)

the diffusive flux becomes

jdiff.k = −kBTνk∇nk − νkqknk∇Φ

= −Dk∇nk − νkqknk∇Φ,
(2.6)

where Dk = νkkBT is the diffusion coefficient fulfilling the Einstein-Smoluchowski rela-
tion. Now we consider the fluid and the advective flux that is caused by the moving fluid
transporting the species. Under the assumption that particles of a species instantaneously
assume the advective velocity v the related flux is

jadv.k = nkv. (2.7)

Like in the overdamped limit of a langevin simulation inertial effects of single particles are
ignored.

Putting together equations 2.2, 2.6 and 2.7 yields the following term for the time evolution
of the densities

∂tnk = −∇(jdiff.k + jadv.k ) = ∇(Dk∇nk + νkqknk∇Φ− nkv). (2.8)

The electrostatic potential is derived under the assumption that magnetic and electrody-
namic effects can be neglected. This is justified for soft matter systems like electrolytic
solutions which are characterised by slow dynamics and low current densities. In such a
system the electric field is given by Poissons’s equation

∇ · (εE) =
∑
k

qknk (2.9)

with ε being the permittivity of the medium. In this work we only consider constant
permittivity. The electrostatic field can be written as E = −∇Φ and the potential Φ is
defined through Poisson’s equation

∆Φ =
1

ε

∑
k

qknk = −4πlBkBT
∑
k

qknk (2.10)
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2.2. LATTICE-BOLTZMANN

where lB = e2

4πεkBT
is the Bjerrum length. To complete the model we need a description for

the advective velocity v. We start with the Navier-Stokes equations for the fluid. They
can be derived by inserting the stress tensor of an incompressible Newtonian fluid into the
conservation of momentum

∇ ·Π = − ∂

∂t
(ρu), (2.11)

with the stress tensor Π, the local densityp and the fluid velocity u. Assuming an incom-
pressible Newtonian fluid the Navier-Stokes-equations are

ρ
∂

∂t
u+ ρ(u∇)u = −∇p+ η∆u+ f

ρ
∂ρ

∂t
+∇ · (ρu) = 0

(2.12)

with hydrodynamic pressure p, dynamic viscosity η and external force density f . The
behaviour of the flow is indicated by the dimensionless Reynold’s number Re = ρūl

η , where
ū is the average fluid velocity and l a characteristic length scale of the system. For low
Reynold’s numbers the viscous forces are dominant, in this limit and in a stationary refer-
ence frame Eq. 2.12 becomes the Stokes equation

η∆u = ∇p− f .
∇ · v = 0

(2.13)

where η is the sheer viscosity. Detailed in Rempfer et. al. [25] we extend the commonly
used hydrodynamic driving force f = −∑k qkeρk∇Φ by a term corresponding to the ideal
gas pressure of the ion species yielding

f = −
∑
k

(kBT∇ρk + qkeρk∇Φ). (2.14)

This choice reduces problems with spurious flow because the force density acting on the
fluid now vanishes in equilibrium. With this force density the Stokes equations become

η∆v = ∇p−
∑
k

(kBT∇ρk + qkeρk∇Φ).

∇ · v = 0

(2.15)

2.2 Lattice-Boltzmann

The fluid is handled with a lattice based continuum model. Specifically the Lattice-
Boltzmann (LB) method [16] is used to solve the Stokes equation. The model introduces a
regular cubic grid with populations of discrete velocities sitting on the nodes. Each velocity
is chosen such that it transports a particle from one node to a neighbouring node during
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CHAPTER 2. THE ELECTROKINETIC MODEL

one time step. The LB method can be divided in two steps, the streaming step and the col-
lision step. During the streaming step populations of the discrete velocities are transferred
to the associated neighbours and during the collision step the populations relax towards
an equilibrium distribution. Figure 2.1 shows a visualization of the two steps for a 2D grid.

Collision

Streaming

Figure 2.1: Visualization of the streaming and collision step of the LB method in 2D.

The LB method can be obtained from a discretisation of the Boltzmann equation, which
describes the evolution of the phase space distribution of the particles. We use the it to
numerically solve equation 2.15. The phase space distribution function f(x,p, t) denotes
the number density of particles at position x with momentum p at time t and its time
evolution is described by

d

dt
f(r,v, t) =

(
v · ∇r +

1

m
F · ∇v +

∂

∂t

)
f(r,v, t) =

1

τ
(f eq(v − f(r,v, t)). (2.16)

where m is the mass of a single particle, F is an externally applied force, τ the relaxation
time and f eq the equilibrium distribution which is known to be a Maxwell-Boltzmann
distribution. Discretizing d

dtf(r,v, t) using a finite number of velocities and a regular
cubic grid leads to

fi(r + ci∆t, t+ ∆t) = fi(r, t) +
∑
k

Likf
eq
k − fk(r, t) + Ψi, (2.17)

where Ψi is the change in population caused by external forces and the relaxation τ is
replaced with the Multi-Relaxation Time collision operator L. Using this linear operator,
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2.3. ELECTROSTATIC INTERACTION

which can be expressed as a matrix, we can set the fluid’s bulk and sheer viscosity in-
dividually. In the continuum limit with the right choice of the collision operator the LB
method reproduces the desired Stokes equation. The Electrokinetics feature makes use of
the in ESPResSo implemented D3Q19 LB scheme, which uses 19 discrete velocities on a
3D grid (see Fig. 2.2). For a more detailed explanation of the LB method and the collision
operator used see Dünweg [10].

Figure 2.2: A node of a D3Q19 LB grid, showing the 19 discrete velocities. Image taken from rempfer [24]

2.3 Electrostatic interaction

The electrostatic interaction is handled through an electrostatic potential Φ. Poisson’s
equation gives us

∇2Φ(r) = −4πlBkBT
∑
k

qknk(r). (2.18)

This is a single linear, elliptic, Partial Differential Equation in three dimensions. Since
the Lattice-Boltzmann method is discretized on a regular cubic grid it lends itself to also
discretize the electrostatic interaction on this grid. We use a finite difference scheme, where
the derivative is approximated as the finite difference between points with spacing a. Only
considering the nearest neighbours yields

− 4πlBkBT
∑
k

qknk(r) =
∑
ci

(Φ(r + ci)− Φ(r)), (2.19)

where r + ci is the location of the neighbours. For our regular grid in three dimensions
there are 6 nearest neighbours and node r itself, this is a 7 point stencil. In order to solve
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CHAPTER 2. THE ELECTROKINETIC MODEL

this system of linear equations we make use of Fourier transformations since the equations
will decouple in Fourier space. The following steps are used to solve the system [24]:

1. Using an FFT algorithm to calculate the Fourier Space representation ρ̂(k) of the
charge density ρ(r).

2. A shift in real space is a multiplication with a scalar in Fourier space, shifting
f(x, y, z) by (a, b, c) for example yields

f(x+ a, y + b, z + c)

=
1√

NxNyNz

Nx−1∑
kx=0

Ny−1∑
ky=0

Nz−1∑
kz=0

e
2πi

(
kx(x+a)

Nx
+

ky(y+b)

Ny
+

kz(z+c)
Nz

)
f̂(k)

=
1√

NxNyNz

Nx−1∑
kx=0

Ny−1∑
ky=0

Nz−1∑
kz=0

e
2πi

(
kxx
Nx

+
kyy

Ny
+ kzz

Nz

) [
e

2πi
(

kxa
Nx

+
kyb

Ny
+ kzc

Nz

)
f̂(k)

]
.

(2.20)

Utilizing this theorem the finite difference approximation and the 7-point stencil
allow us to write

Φ(k) =
−2πh2lBkBT

cos(2πkx
Nx

) + cos(2πkx
Nx

) + cos(2πkx
Nx

)− 3
ρ̂(k), (2.21)

where we switched to Cartesian coordinates and Nx,y,z is the number of lattice nodes
in dimension x, y, z.

3. Applying an FFT back transform to calculate the electrostatic potential in real space
Φ(r).

2.4 Noise Term

The model described in the previous sections is not fully thermalised yet. In soft matter
systems such as the later investigated polyelectrolytes the interactions at play are in the
range of the thermal energy, which means thermal fluctuations should be considered. We
introduce a noise term in the density flux to solve this problem. We start by considering
a system of N identical particles all undergoing independent Brownian motion. We also
include a pair potential V (r) and an external one-body potential Φ(ri, t). The particles
obey

dri
dt

= ηi(t)−∇iΦ(ri, t)−
N∑
j=1

∇V (|ri − rj |), (2.22)

where ηi(t) is a uncorrelated Gaussian random force defined through

〈ηµi (t)ηνj (t′)〉 = 2Dδijδ
µνδ(t− t′), 〈ηi(t)〉 = 0. (2.23)
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2.4. NOISE TERM

Following [5] we will derive a equation for the global density operator

n(r, t) =
N∑
i=1

ni(r, t) =
N∑
i=1

δ(ri(t)− r) (2.24)

with ni(r, t) = δ(ri(t) − r) being the density function of a single particle. With f being
an arbitrary function the definition of density allows us to write

f(ri(t)) =

∫
d3r ni(r, t)f(r) (2.25)

and
df(ri)

dt
=

∫
d3r

∂ni(r, t)

∂t
f(r). (2.26)

Equation 2.25 can be expanded over the next small time step dt using stochastic Ito calculus
[23]. Ito calculus extends methods of calculus to stochastic processes, Ito’s Lemma can be
seen as the stochastic counterpart of the chain rule, in differential form with f = f(t,X),
where X denotes Brownian motion, it is written as

df(t,X(t)) =
df(t,X(t))

∂t
dt+

1

2

∂2f

∂X2
dt+

∂f

∂X
dX. (2.27)

Applying this to Equation 2.25 yields

df(ri)

dt
=

∫
d3r f(r)

(
−∇ · (ni(r, t)ηi(t)) +∇ · (ni(r, t)∇Φ(ri, t))

+∇ni(r, t) ·

 N∑
j=1

∇V (|r − rj |)

+D∇2ni(r, t)

)
.

(2.28)

Comparing equation 2.26 to 2.28 and summing over the single particles i we arrive at

∂n(r, t)

∂t
=ξ(r, t) +∇ · n(r, t)∇Φ(ri, t)

+∇ ·
(
p(r, t)

∫
d3r′ n(r′, t)∇V (|r − r′|)

)
+D∇2n(r, t),

(2.29)

where the noise term ξ(r, t) is defined as

ξ(r, t) = −
N∑
i=1

∇ · (ni(r, t)ηi(t)) (2.30)

with correlation function

〈ξ(r, t)ξ(r′, t′)〉 = 2Dδ(t− t′)
N∑
i=1

∇r · ∇r′(ni(r, t)ni(r′, t)). (2.31)

9



CHAPTER 2. THE ELECTROKINETIC MODEL

The correlation function can be rewritten using the properties of the Dirac delta function
yielding

〈ξ(r, t)ξ(r′, t′)〉 = 2Dδ(t− t′)∇r · ∇r′(δ(r − r′)ni(r, t)). (2.32)

We introduce a global noise field

ξ′(r, t) = ∇(η(r, t)
√
n(r, t)) (2.33)

with the global white noise field η characterised by

〈ηµ(r, t)ην(r′, t′)〉 = 2Dδµνδ(t− t′)δ(r − r′), 〈η(r, t)〉 = 0. (2.34)

The global noise field ξ′ has the same correlation function as ξ making them statistically
identical and allowing us to rewrite equation 2.29 as

∂n(r, t)

∂t
= ∇ ·

(
p(r, t)∇Φ(ri, t) +D∇n(r, t) +

√
n(r, t)η(r, t)

+ n(r, t)

∫
d3r′ n(r′, t)∇V (|r − r′|)

)
.

(2.35)

This equation is not mathematically well defined because the solution should be considered
a distribution and the square root of a distribution is not always well defined. It is a
good representation of the physical model and through spatial discretization a well defined
mesoscopic description can be obtained [15]. Equation 2.35 is essentially a more general
version of equation 2.6 with an additional noise term. Relating back to the Electrokinetics
model where we have a electrostatic interaction and an additional advective flux term gives
us

∂nk
∂t

= −∇ · jk,

jk = −Dk∇nk − νkqknk∇Φ−√nkηk + nkv,

(2.36)

with diffusion coefficient Dk, mobility vk, the electrostatic potential Φ and advective ve-
locity v. Together with the in chapter 2 derivated equations for the electrostatic potential
and the advective velocity this completes our model.
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Chapter 3

Discretization

As shown in chapter 2 the evolution of the particle densities nk is described by

∂nk
∂t

= −∇ · jk,

jk = −Dk∇nk︸ ︷︷ ︸
jdiff

−νkqknk∇Φ︸ ︷︷ ︸
jpot

−√nkηk︸ ︷︷ ︸
jfluc

+nkv︸ ︷︷ ︸
jadv

.
(3.1)

We want to discretize the equations 3.1 using a regular cubic grid like it was done for
the electrostatic and the advective velocity. In our discretization a grid node represents a
cubic cell with uniform density reaching half way to its neighbours. The flux is defined on
staggered grid, shifted by a/2 compared to the density grid, where a is the distance between
grid nodes. Rempfer [24] already implemented a discretization utilizing finite differences
and the Gauss’ theorem. We choose an alternative approach to make sure the discretization
is compatible with the additional noise term. We will derive an 19-point stencil following
[22]. We start by considering the problem in one dimension. Approximating ∇ji with the
finite difference method allows us to write

∇ · ji ≈
1

a
(ji+1/2 − ji−1/2), (3.2)

where ji±1/2 represents the flux on the face between node i with density ni and node i± 1

with density ni±1. We now look at the different contributions to the flux starting with the
fluctuations

jfluck,i =
√
nk,iηk,i,

∇ · jfluck,i ≈
1

a
(ji+1/2 − ji−1/2)

≈ 1

a

√
nk,i+1/2 ηk,i+1/2 −

√
nk,i−1/2 ηk,i−1/2.

(3.3)

The density on the faces i± 1/2 have to be approximated since the density is only defined
on the nodes. A reasonable solution is to approximate via the arithmetic mean nk,i±1/2 =

11



CHAPTER 3. DISCRETIZATION

nk,i+nk,i±1

2 which yields

∇ · jfluck,i ≈
1

a

√
nk,i+1 + nk,i

2
ηk,i+1/2 −

√
nk,i + nk,i−1

2
ηk,i−1/2. (3.4)

The second contribution to the flux becomes

jdiffk,i = −Dk∇nk

∇ · jdiffk,i ≈ −
Dk

a
(∇nk,i+1/2 −∇nk,i−1/2).

(3.5)

We again use finite differences to approximate ∇nk,i±1/2 which yields

∇nk,i−1/2 ≈
1

a
(ni − ni−1)

∇nk,i+1/2 ≈
1

a
(ni+1 − ni).

(3.6)

Inserting 3.6 into 3.5 gives

∇ · jdiffk,i ≈ −
Dk

a2
(ni+1 + ni−1 − 2ni). (3.7)

The contribution by the electrostatic potential is treated in similar fashion yielding

jpotk,i = νkqknk∇Φ

∇ · jpotk,i ≈ −
1

a2
νkqk

(
nk,i+1 + nk,i

2
· (Φi+1 − Φi) +

nk,i + nk,i−1

2
· (Φi−1 − Φi)

)
.

(3.8)

The extension to three dimension is straight forward if we only consider flux through the
faces of our cubic cells. For example for the contribution by the electrostatic potential we
get

∇ · jpotk,i ≈ −
1

a2
νkqk

∑
j∈Nf

(
nk,i + nk,j

2
· (Φi − Φj)

)
. (3.9)

where
∑

j∈Nf
is the sum over all nearest neighbours (faces). Only having flux between the

nearest neighbours can lead to anisotropies in the dynamics caused by the geometry of the
lattice. To avoid this problem we need a stencil that includes the next nearest neighbours
as well. In three dimensions we have 6 nearest neighbours (faces) and 12 next nearest
neighbours (edges). We start by constructing three orthogonal basis sets that together
include all 18 links. For each of the basis sets shown in figure 3.1 we can utilize the same
discretization method used to reach equation 3.9.

12



Figure 3.1: Three orthogonal basis sets that together include all 6 faces (blue) and 12 edges (orange).

Taking the average over all three sets then gives us

∇ · jpotk,i ≈ −
1

3a2
νkqk

( ∑
j∈Nf

nk,i + nk,j
2

· (Φi −Φj) +
1

2

∑
j∈Ne

nk,i + nk,j
2

· (Φi −Φj)

)
(3.10)

∇ · jdiffk,i ≈ −
Dk

3a2

( ∑
j∈Nf

(nk,j − nk,i) +
1

2

∑
j∈Ne

(nk,j − nk,i)
)

(3.11)

∇ · jfluck,i ≈
√

2D

3a

( ∑
j∈Nf

√
nk,i+1 + nk,i

2
Wi↔j +

1√
2

∑
j∈Ne

√
nk,i+1 + nk,i

2
Wi↔j

)
. (3.12)

Here W is a uncorrelated Gaussian random number field defined through η =
√

2DW
with a random numberW i↔j for every link. The first sum in each equation goes over all
faces and the second over all edges, the additional factor in front of the second sum comes
from the normalisation since the distance to the next nearest neighbours is

√
2a.

We use an explicit first order time stepping scheme and consider that the time integral
over white noise is

∫ t+∆t
t W(t′)i↔jdt

′ =
√

∆tWi↔j which yields

nk,i(t+ ∆t) = nk,i(t)−∆t · ∇(jpotk,i + jdiffk,i +
1√
∆t

jfluck,i ). (3.13)

Considering only jdiff the second moment of a particle distribution initially located at node
i, after one time step, should match the correct continuum value. The continuum solution
for a point source in one dimension is given by

n(x, t) =
1

(4πDt)
3
2

exp
(
− x2

4Dt

)
. (3.14)

See chapter 5.1 for a short derivation. To calculate the second moment we make use of∫ ∞
−∞

x2e−x
2
dx =

1

2

∫ ∞
−∞

e−x
2
dx− 1

2
[e−x

2
]∞−∞ =

√
π

2
. (3.15)

13



CHAPTER 3. DISCRETIZATION

Applying this to the second moment of the particle distribution yields∫ ∞
−∞

x2n(x, t)dx = 2Dt. (3.16)

The calculation can easily be extended to d dimensions and assuming isotropic diffusion
the second moment is ∫ ∞

−∞
r2n(r, t)dr = 2dDt. (3.17)

To match this value our model has to fulfil∑
j∈Nf

a2nj(∆t) +
∑
j∈Ne

(
√

2a)2nj(∆t) = 2dD∆t, (3.18)

where d is the dimensionality. Considering equations 3.10-3.13 this is satisfied since

∆t

(
6 · a2 D

3a2
+ 12 · (

√
2a)2 D

6a2

)
= 6D∆t. (3.19)

The last missing part is the advective flux. We rely on the assumption that the density
of particles in the volume represented by a node is homogeneous. The advective velocity
displaces this volume and transfers it to neighbouring cells. Figure 3.2 shows the scheme
for a two dimensional grid.

We finish this chapter with a comparison of the derived discretization with the one initially
implemented by Rempfer which is also a 19 point stencil given by

nk(r, t+ ∆t) = nk(r, t)−∆t · 1

1 + 2
√

2

∑
i

jki(r, t),

jki(r, t) = Dk ·
nk(r, t)− nk(r + ci, t)

|ci|
+ νk qk ·

nk(r + ci, t) + nk(r, t)

2
· Φ(r + ci)− Φ(r)

|ci|
,

(3.20)
where r + ci is the location of the neighbouring node. Writing our new discretization in
this notation neglecting the noise term for the moment gives

nk(r, t+ ∆t) = nk(r, t)−∆t · 1

3

∑
i

jki(r, t),

jki(r, t) = Dk ·
nk(r, t)− nk(r + ci, t)

|ci|2
+ νk qk ·

nk(r + ci, t) + nk(r, t)

2
· Φ(r + ci)− Φ(r)

|ci|2
.

(3.21)
While both discretizations fulfill equation 3.18 the normalization is different. In the fol-
lowing section we verify the model and its discretization against a few simple system.
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Figure 3.2: Scheme for the advection on a two dimensional grid with spacing h. The dashed lines indicate
the boundaries between cells with the lattice nodes in their centre. The flux to the right neighbour would
be given by n(r)vx(1− vy) h2

∆t
. Image taken from rempfer [24].
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Chapter 4

Implementation

4.1 Compute Unified Device Architecture

The implementation of the Electrokinetics feature utilizes the computational power of
Graphics Processing Units using the NVIDIA Compute Unified Device Architecture [21].
While the program is still executed on the CPU tasks can be offloaded to the GPU giving a
massive performance improvement. A CUDA capable GPU is a vector processor consisting
of several Streaming Multiprocessors, which each having multiple cores. The cores of one
SM execute the same instructions with each core working with a different set of data. Mod-
ern GPUs have a huge number of cores representing strong computational power. One bot-
tleneck is often the data transfer to and from the device which is done over the Peripheral
Component Interconnect Express bus. NVIDIA makes use of streamed processing, where
tasks, memory transfers and calculations are ordered in streams for subsequent execution.
These streams are processed asynchronously to the host programm meaning calculations
in one stream can be overlapped by calculations on the CPU and other streams. In or-
der to avoid having a SM being idle while waiting for data multi-threading is used. This
allows the SM to execute a different set of threads instead of waiting on the GPU memory, .

The GPU lattice boltzmann method we utilize was implemented in ESPResSo by Röhm
[26]. This thesis is built on the implementation of the Electrokinetic solver done by Rempfer
[24]. We shortly summarize the basic integration loop for the Electrokinetics Solver and
look closer on the newly added fluctuations afterwards.
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4.2. ELECTROKINETICS SOLVER

4.2 Electrokinetics Solver

The integration loop of the Electrokinetics Solver is:

1. Calculate fluxes and propagate the particle densities for each species.

(a) Clear the fluxes from the previous loop.

(b) Calculate the fluxes for the current species.

(c) Clear all fluxes connecting boundary nodes.

(d) Propagate densities according to the calculated fluxes.

2. Calculate the electrostatic potential

3. Integrate the LB

For details on the implementation and usage of CUDA see Rempfer [24]. We will focus
on the newly implemented fluctuations. CUDA is utilized to create the normal random
numbers fast, the random number generator is initialized by

1 __global__ void initialize_random_generator(int seed) {

2 int index = ek_getThreadIndex ();

3 /* Each thread gets same seed , a different sequence ←↩
number , no offset */

4 curand_init(seed , index , 0, &ek_parameters_gpu.←↩
rnd_state[index]);

5 }

1 auto seed = random_integral <unsigned long long >();

2 KERNELCALL( initialize_random_generator , dim_grid , ←↩
threads_per_block , (seed) );

17



CHAPTER 4. IMPLEMENTATION

The function adding the fluctuations to the flux is called for every node and loops over the
neighbours:

1 __device__ void ek_add_fluctuations_to_flux(unsigned int←↩
index , unsigned int species_index , unsigned int *←↩

neighborindex , LB_nodes_gpu lb_node) {

2

3 for(int i = 0; i < 9; i++) {

4 float random = (curand_normal (& ek_parameters_gpu.←↩
rnd_state[index]));

5 .

6 .

A direct implementation of Eq. 3.21 allows for fluxes out of an already empty cell since
the fluctuation term of the flux depends on the square root of the mean density of the
cell and its neighbour. This can lead to negative densities, which are unphysical and our
fluctuation flux becomes undefined since it depends on the square root of the densities.
The simplest solution to this problem would be turning off the fluctuations for any cell with
zero or smaller density, but this would lead to a delta peak in the density distribution at
n = 0 [15] for simulations with small densities. Instead we opt to use a smoothed Heaviside
function defined by

H(x) =


0, (x ≤ 0)

x, (0 < x < 1)

1, (x ≥ 1)

(4.1)

to modify the arithmetic mean yielding

ñ(n1, n2) =
n1 + n2

2
H(n1)H(n2). (4.2)

This avoids the discontinuity at n = 0, while still preventing negative densities. This is
easily implemented as

12 float H = (density >= 0.0f) * min(density , 1.0f);

13 float HN = (neighbor_density >= 0.0f) * min(←↩
neighbor_density , 1.0f);

14 float mean_density = H * HN * (density+←↩
neighbor_density)/2.0f;
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4.2. ELECTROKINETICS SOLVER

We need to differentiate between fluxes to nearest and next nearest neighbours (see equa-
tion 3.21)

15 //Next nearest neighbours

16 if(i > 2) {

17 float fluc = powf (2.0f * mean_density * D * dt / (←↩
agrid * agrid), 0.5f) * random / (sqrt (3.0f) * ←↩
sqrt (2.0f));

18 fluc *= !( lb_node.boundary[index] || lb_node.←↩
boundary[neighborindex[i]]);

19 flux[jindex_getByRhoLinear(index , i)] += fluc;

20 }

21 // Nearest neighbours

22 else {

23 float fluc = powf (2.0f * mean_density * D * dt / (←↩
agrid * agrid), 0.5f) * random / sqrt (3.0f);

24 fluc *= !( lb_node.boundary[index] || lb_node.←↩
boundary[neighborindex[i]]);

25 flux[jindex_getByRhoLinear(index , i)] += fluc;

26 }
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Chapter 5

Validation

5.1 Diffusion

We look at the diffusion of a point source and verify that the implemented Electrokinetics
model and the chosen discretization behaves correctly. We also compare the results with
the previously implemented discretization. The system is a number density n0 initially at
x = 0 in one dimension. Mass conversion gives us

∂n

∂t
= D

∂2n

∂x2
, (5.1)

with the diffusion coefficient D. A solution for n(x, t) can be found through dimensional
analysis. n(x, t) can be assumed to be a function of D [m2s−1], x [m], t [s] and n [L−1].
These parameters can form two dimensionless groups and thus yields

n
√
Dt = f(

x√
Dt

) (5.2)

We continue by defining

η =
x√
Dt

,
∂η

∂t
= − η

2t
,

∂η

∂x
=

1√
Dt

. (5.3)

From here we can calculate

∂n

∂t
= − n0

2t
√
Dt

(
f + η

∂f

∂η

)
, (5.4)

∂2n

∂x2
= − n0

2t
√
Dt

(
f + η

∂f

∂η

)
. (5.5)

Substituting these equations into 5.1 yields

d2f

dη2
+

1

2

(
f + η

df

dη

)
= 0, (5.6)
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5.1. DIFFUSION

which can solved with

f = Cexp
(
−η

2

4

)
, (5.7)

where C can be found considering mass conservation

n0 =

∫
V
n(x, t)dV (5.8)

yielding ∫
Cexp(−η

4
)dη = 1. (5.9)

This is solved by C = 1√
4π

and with that we arrive at

f =
1√
4π

exp(
η2

4
) (5.10)

n(x, t) =
n0√
4πDt

exp
(
− x2

4Dt

)
. (5.11)

In three dimensions with initial condition n(t = 0) = n0δ(x)δ(y)δ(z) and Dx = Dy = Dz

the same methods can be applied yielding

n(x, t) =
n0

(4πDt)
3
2

exp
(
−x

2 + y2 + z2

4Dt

)
. (5.12)

We simulate a similar system using the Electrokinetics model by initializing a single node
with density n0 = 8 in an otherwise empty system. We measure the density along the
X-axis and along the diagonal of the XY plane (see Fig. 5.1). The diffusion coefficient is
set to 1.0, fluctuations are switched off and the system size is chosen to be Lx,y,z = 40. The
simulation was run for 2000 time steps with ∆t = 0.01. As can be seen in Fig. 5.2 and 5.3
there is no significant difference between the two discretization stencils and both show good
agreement with the analytical solution for the point source. The small deviations close to
the source location are expected since our simulated system is not an actual infinitesimal
point source.
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𝑛0

XY

X

Figure 5.1: 2D sketch of a system initialised with density n0 in one cell. Orange lines indicate the two
axes where values were taken from.
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Figure 5.2: Number density n after 200 time steps with ∆t = 0.01[t] plotted against the distance to initial
source location r0. Distance is given in units of the lattice parameter. Values for the density were taken
along the X-axis and along the diagonal of the XY plane.
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Figure 5.3: Number density n after 100 time steps with ∆t = 0.01[t] plotted against the distance to initial
source location r0. Distance is given in units of the lattice parameter. Values for the density were taken
along the X-axis and along the diagonal of the XY plane.

5.2 Ideal Gas

The simplest system to verify the fluctuations of the continuum model described and
implemented in the previous chapters is an ideal gas. Considering a system with volume
V containing N uncharged non-interacting particles we can find the probability PN (n) of
a partial volume v to contain n particles as

PN (n) =

(
N

n

)
pn(1− p)N−n, (5.13)

where p is the probability for a particle to be in v. For our system p is simply the volume
ratio v

V which yields

PN (n) =
N !

n!(N − n)!

( v
V

)n(V − v
V

)N−n
. (5.14)

For big systems where V >> v and N →∞ Eq. 5.13 simplifies to the Poisson distribution

P (n) =
n̄ne−n̄

n!
, (5.15)
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with the mean n̄ = N v
V . Using Stirling’s approximation n! ≈

√
2πn

(
n
e

)n yields the
continuous function

P (n) =
1√
2πn

( n̄
n

)n
en−n̄. (5.16)

Equations 5.13 - 5.16 all do not depend on the temperature or mobility of the particles. The
approximated density distribution P (n) in Eq. 5.16 only depends on the mean particle
Number n̄.

A simulation of a system containing a single uncharged species and no background fluid is
set up with the Electrokinetics feature of ESPResSo. The system has periodic boundary
conditions and the box is chosen to be a cube with L = 18[x]. All interactions with the
Lattice-Boltzmann fluid are disabled in order to create an ideal gas like system. The number
density of the species is chosen to be 27/[m]3, the diffusion constant is set to 1.0 [x]2

[t] and
the time step is ∆t = 0.0005 [s]. The simulation is run for 107 integration steps and the
number of particles in every cell is saved every 1000 steps. Figure 5.4 shows the histogram
of the density data of all cells and time steps.
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Figure 5.4: Frequency of different values for the number density. Bin size is 0.275, with the first bin
starting at N = 10. The system is an ideal gas simulated using the Electrokinetics model.

In addition to the simulation using the Electrokinetics feature a simulation using explicit
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point particles was done. For this plain molecular dynamics simulation a langevin ther-
mostat with friction γ = 1.0 and kbT = 1.0 [E] is used to thermalise the particles. Other
simulation parameters are chosen to be the same as in the Electrokinetics simulation. This
MD system consisting of particles undergoing independent Brownian motion is the system
we discussed for the derivation of the noise term in chapter 2.4 making it the obvious choice
to validate our implementation of the continuum model. For the analysis the simulation
box is divided into cells and every 1000 steps the number of particles in every cell is counted
and saved.

In figure 5.5 we can see that the Electrokinetics and the molecular dynamics simulation
are both replicating the expected distribution (Eq. 5.16) of an ideal gas.
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Figure 5.5: Comparison of the number density distribution for the Electrokinetics simulation (orange), the
MD simulation (blue) and the theoretical solution (green).

5.3 Coloumb Gas

We now look at a more complex system containing two oppositely charged ion species. The
two species have a charge of q1 = +1[q] and q2 = −1[q] respectively. The number density
is the same for both and is set to 108/[m]3, which means the system in total is neutral.
The other simulation parameters are chosen to be the same as in the Ideal gas simulation.
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We again compare the results with a molecular dynamics simulation. The electrostatic
interactions in the MD system are handled with the P3M algorithm implemented in
ESPResSo and we set the Bjerrum length to lB = 1.0. In order to prevent a collapse
into positive/negative pairs a Lennard Jones potential is added to the particles. The
potential is defined by [11]

VLJ(r) =

4ε

[(
σ

r−roff

)12
−
(

σ
r−roff

)6
+ cshift

]
if rmin + roff < r < rcut + roff

0 otherwise

(5.17)

where ε is the depth of the potential well, σ is the distance at which the potential is zero,
r is the distance between particles, rmin is the distance at which the potential reaches
its minimum and beyond rcut the potential is cut off and the interaction force becomes
zero. For the simulation we set σ = 0.225[x] and ε = 1.0[E]. The cutoff is chosen to be
rcut = 2

1
6σ, which yields the purely repulsive Weeks-Chandler-Andersen potential.

The resulting density distributions P (n) of the Electrokinetics and the molecular dynamics
simulation match as shown in figure 5.6.
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Figure 5.6: Comparison of the number density distribution of a coloumb gas simulated using the Electroki-
netics model (orange) and a MD simulation (blue).
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5.4 Spatial Correlations

The second moment of the simulated distribution and the Poisson distribution should also
agree. The second moment of the Poisson distribution is given by

〈n(r, t)n(r, t)〉 =
∞∑
n=0

n〈n(r, t)n(r, t)〉 = n̄n̄+ n̄, (5.18)

where n̄ is the mean particle number. In order to verify the second moment in our simu-
lation we average over T time steps and the entire lattice, this can be expressed by

T∑
t=1

∑
r

n(r, t)n(r, t)
!

= TV (n̄n̄+ n̄), (5.19)

where V the number of lattice nodes in our system. We rewrite this expression as

T∑
t=1

∑
r

n(r, t)n(r, t)

TV (n̄n̄+ n̄)

!
= 1. (5.20)

Evaluating this for the data of the Ideal gas simulation (chapter 5.2) yields

T∑
t=1

∑
r

n(r, t)n(r, t)

TV (n̄n̄+ n̄)
= 0.99352363, (5.21)

showing a clear agreement with the anticipated second moment but no exact equality since
the Poisson distribution assumes an infinite system. We analyse the second moment further
and try to separate globally conserved modes from non-conserved modes by making use of
Fourier transforms [29]. We assume a square lattice with L nodes in each spatial direction
and define

n(k, t) =
∑
r

exp
(

2π

L
k · r

)
n(r, t). (5.22)

A structure factor for the densities in a three dimensional system can be written as

S(k) = 〈n(k, t)n(−k, t)〉 =
∑
r

∑
r′

exp
(

2π

L
k · (r − r′)

)
〈n(r, t)n(r′, t)〉

= δk0L
6n̄n̄+ L3n̄.

(5.23)

For S(0) Mass conversation imposes

n(0, t)n(0, t) = L6n̄2. (5.24)

We therefore change our equation for S(k) to respect Mass conservation and predict

STh(k) = δk0L
6n̄n̄+ (1− δk0)L3n̄. (5.25)
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We expect our model to satisfy this but we predict small k-dependent deviations of the
Fourier modes caused by the discretization [9]. The deviation

SDif(k) =
〈n(k, t)n(−k, t)〉 − STh(k)

STh(k)
(5.26)

for a L = 10 lattice averaged over 106 time steps is shown in Fig. 5.7. The results show
deviations between 0.5% and 2.5% with a noticeable k dependence. An important limit
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Figure 5.7: Relative deviation of S(k) from the theory for a 10x10x10 lattice averaged over 106 time steps.
There is a noticeable dependence on k.

of our model are very small densities because the Poisson distribution will not resemble
a continuous distribution anymore and our continuous description of fluctuations will no
longer be viable. The in chapter 4 introduced cut-off that prevents negative densities will
lead to further errors. We investigate this low density limit of the model by examining
the 〈n(r, t)n(r, t)〉 for decreasing densities (see Fig. 5.8). The relative deviation from the
theory 〈n(r, t)n(r, t)〉/(n̄2 +n) starts to exponentially grow once densities lower than four
particles per cell are reached. For n̄ > 5 the deviation stays under around 0.1% showing
very good agreement with second moment of the Poisson distribution.
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Figure 5.8: 〈n(r, t)n(r, t)〉/(n̄2 +n) for decreasing densities. Values are averaged over 104 integration steps
and over the 10× 10× 10 lattice.
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5.5 Time correlation

In addition to the spatial correlations we take a look at the time correlations. A function for
the time-correlation of our discretization can be derived from the Fourier transformation
of the diffusion equation [29]. Starting from the diffusive part of our model, neglecting
other contributions, we write

ni(t+ 1) = ni(t)−
D

3

( ∑
j∈Nf

(nj − ni) +
1

2

∑
j∈Ne

(nj − ni)
)
, (5.27)

where we set a, ∆t = 1 for simplicity. Changing the notation from indicating the node via
index i to coordinates (x, y, z)

n(x, y, z,t+ 1)− n(x, y, z, t)

=
D

3

(
n(x+ 1, y, z, t) + n(x, y + 1, z, t) + n(x, y, z + 1, t)

+n(x− 1, y, z, t) + n(x, y − 1, z, t) + n(x, y, z − 1, t)

−6n(x, y, z, t)
)

+
D

6

(
n(x+ 1, y + 1, z, t) + n(x− 1, y + 1, z, t) + n(x+ 1, y − 1, z, t) + n(x− 1, y − 1, z, t)

+n(x, y + 1, z + 1, t) + n(x, y − 1, z + 1, t) + n(x, y + 1, z − 1, t) + n(x, y − 1, z − 1, t)

+n(x+ 1, y, z + 1, t) + n(x− 1, y, z + 1, t) + n(x+ 1, y, z − 1, t) + n(x− 1, y, z − 1, t)

−12n(x, y, z, t)
)
.

(5.28)
The discrete Fourier transformation of this equation is

∑
x,y,z

e
i2π( kxx

Lx
+

kyy

Lyx
+ kzz

Lz
)
[n(x, y, z, t+ 1)− n(x, y, z, t)]
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3
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e
i2π( kxx
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)
n(x, y, z, t)
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∑
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e
i2π( kxx
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+
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+ kzz
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)
n(x, y, z, t)

(5.29)
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with

γ(kx,ky, kz)

=
D

3

[
12− 2cos

(
π
kx
Lx

)
− 2cos

(
π
ky
Ly

)
− 2cos

(
π
kz
Lz

)
− cos

(
π(
kx
Lx

+
ky
Ly

)

)
− cos

(
π(
kx
Lx
− ky
Ly

)

)
− cos

(
π(
ky
Ly

+
kz
Lz

)

)
− cos

(
π(
ky
Ly
− kz
Lz

)

)
− cos

(
π(
kx
Lx

+
kz
Lz

)

)
− cos

(
π(
kx
Lx
− kz
Lz

)

)]
(5.30)

The solution is given by

n(kx, ky, kz, t) = n(kx, ky, kz, 0)e−γ(kx,ky ,kz)t. (5.31)

For the time correlation function we therefore expect

c(kx, ky, kz, t) =
〈n(kx, ky, kz, 0)n(−kx,−ky,−kz, t)〉
〈n(kx, ky, kz, 0)n(−kx,−ky,−kz, 0)〉 = e−γ(kx,ky ,kz). (5.32)

Fig. 5.9 shows good agreement for different Fourier modes. The values were averaged over
3.6 · 106 iterations.
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Figure 5.9: Time correlation of Eq. 5.32 for a lattice with Lx = Ly = Lz = 10, D = 1.0 and mean density
n̄ = 120. The values have been averaged over 106 iterations
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Chapter 6

Polymer Simulations

In the previous chapters we validated that the new fluctuations behave as expected and
results from simulations using the EK model match with theory and MD-Simulations for
simple systems such as an ideal gas.
The big advantage of using a continuum model for the ions is that we can simulate sys-
tems containing lots of ions cheaper compared to models using explicit ions. With the now
thermalised model we can look to simulate complex soft matter systems, where the energy
scale of the interactions is in the range of the thermodynamic energy, which means thermal
flucutations can play an important role.

The old, not thermalised implementation of the EK model was used by Schoell [27] to
simulate the ions in a system consisting of a polyelectrolyte dissolved in water and ions
from its autoprotolysis. While the fluid handled by Lattice Boltzmann and the particles of
the polymer were properly thermalised, the noise in the ion fluxes was missing. The results
were compared to Grass et. al. [13][12] who used particle ions to simulate the same physical
system. The results showed that while the continuum model is able to simulate big systems
with high salt concentrations faster than a particle based simulation, quantitatively the
simulation results did not match the correct physical behaviour very well. Schoell proposed
two ways to improve the model, an excluded volume interaction between ion species and
MD-Particles and the thermalisation of the ion fluxes. With the thermalisation of the
ion fluxes now implemented we revisit these polyelectrolyte simulations in the hope of
improving the results.

6.1 Model

The system of interest is a polyelectrolyte in water with dissolved ions. The polymer
is charged after dissociating counterions into the fluid. We look at the case where only
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6.1. MODEL

those counterions are present and no salt is added. The polymer is modelled using a
coarse-grained bead-spring model. Each bead can represent a single monomer or several
depending on which resolution is needed and which molecule is investigated. The beads in-
teract with each other via a WCA (Weeks-Chandler-Andersen) potential, an electrostatic
potential and a pair-potential. We use the FENE (finitely extensible nonlinear elastic)
pair-potential. The fluid and the dissolved ions are handled by the Electrokinetics model
introduced in previous chapters, whereas the beads are simulated as explicit (Molecular
Dynamics) particles. The beads and ions can interact through electrostatic and hydrody-
namic interactions but there is no excluded volume interaction between ions and beads.
The thermalisation of the beads/monomers is achieved through the Lattice-Boltzmann fluid
by fluctuations of the coupling force between fluid and particles. The fluid is thermalised
by fluctuations added to the stress tensor and the ions are thermalised with the in chapter
2.4 derived fluctuations of the flux.
Since we later compare our results to Schoell [27] and Grass et. al. [13][12] we list the
differences of the used models. The model used by Schoell only differs in the description of
the ion species, using the previous discretization (see eq. 3.20) and having no fluctuation
term in the ion fluxes.
Grass et. al. uses MD particles for both ions and monomers and Lattice Boltzmann for
the fluid. The ions and monomers are both thermalised through the coupling with the
LB fluid and the fluid is like in our model thermalised through noise applied to the stress
tensor. Another notable difference is that there is an excluded volume interaction between
ions and monomers in the model used by Grass et. al., which is missing in Schoells and
our model.

The WCA potential has the same form as the one used in 5.3 (eq. 5.17)

VLJ(r) =

4ε

[(
σ

r−roff

)12
−
(

σ
r−roff

)6
+ cshift

]
if rmin + roff < r < rcut + roff

0 otherwise

with the cut-off at rcut = 2
1
6 .

The FENE potential we use for the bonds between monomers is [11]

VFENE(r) = −1

2
K ·∆r2

maxln

(
1−

(
r

rmax

)2
)
, (6.1)

where K is the stiffness of the spring. The beads interact with the fluid via friction and
the associated force is [11]

Fhydr. = −γ(v − u) + FR, (6.2)
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CHAPTER 6. POLYMER SIMULATIONS

where v is the particle velocity, u the local fluid velocity and FR the random force of the
thermalisation. The fluid velocity is interpolated from surrounding cells to the particle
position giving us an effective hydrodynamic radius.

The electrostatic interaction between beads is handled with the Particle-Particle-Particle-
Mesh (P3M) algorithm, which is derived from Ewald summation. For a detailed description
see Deserno and Holm [6][7].

The Electrokinetic ion species are coupled to the MD-Particles via the hydrodynamic inter-
action mediated by the Lattice-Boltzmann fluid and via electrostatic interactions. Figure
6.1 gives an overview over the interactions present in the model.

Figure 6.1: Overview over the different interactions present in the model. The advective force of the fluid
onto the ions is not shown. Image taken from Schoell [27].

The electrostatic interaction uses the in chapter 2.3 described FFT method to solve the
Poisson’s equation. Since the particles already interact with each other over the P3M
algorithm we need to take care that the EK species - particle interaction is handled in a
way that does not include the particle-particle interactions a second time. We ensure this
by calculating two potentials, for one potential we include the charge of the ions and of
the particles

∆ΦEK+MD(r) = −4πlBkBT
∑
k

qknk(r) +
∑
i

qiδ(r − ri), (6.3)

for the other potential we only consider the ions

∆ΦEK(r) = −4πlBkBT
∑
k

qknk(r). (6.4)
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6.1. MODEL

We use the potential including all charges ΦEK+MD(r) to calculate the electrostatic forces
on the ions and the other potential ΦEK(r) to calculate the force on the particles.
In order to calculate ΦEK+MD(r) we need to map the charges of the particles to the grid
on which the EK species are defined. We first find in which cell a particle is then calculate
the position of the particle relative to the center of the cell and then map the charge q to
the cell it is in and the surrounding cells keeping the center of the charge distribution at
the position of the particle. Figure 6.2 shows the mapping scheme in 2D.

𝑎

𝑏

𝑞 ∙ (1 − 𝑎)(1 − 𝑏) 𝑞 ∙ 𝑎(1 − 𝑏)

𝑞 ∙ 𝑎𝑏𝑞 ∙ (1 − 𝑎)𝑏

Figure 6.2: 2D Visualization of the scheme used to map the point charges to the lattice of the EK. The
charge q (red circle) is distributed among the cells depending on the location of the point charge in relation
to the lattice. The grey circle represents the center of the cell and a,b are the distances of the point charge
to that center.

We use a Velocity-Verlet integration scheme to solve Newton’s equations of motion for the
beads. The Velocity-Verlet can be derived through Taylor expansions:
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CHAPTER 6. POLYMER SIMULATIONS

r(t+ ∆t) = r(t) + ṙ(t)∆t+
1

2
r̈(t)∆t2 +O(∆t3),

v(t+ ∆t) = v(t) + v̇(t)∆t+
1

2
v̈(t)∆t2 +O(∆t3),

a(t+ ∆t) = a(t) + ȧ(t)∆t+O(∆t2).

(6.5)

We want to express v̈(t) in terms of known quantities

∆tv̈(t) = a(t+ ∆t)− a(t), (6.6)

which allows us to write

v(t+ ∆t) = v(t) +
1

2
a(t)∆t+

1

2
a(t+ ∆t)∆t. (6.7)

The Velocity-Verlet is now given by

r(t+ ∆t) = r(t) + v(t)∆t+
F (t)

2m
r̈(t)∆t2,

v(t+ ∆t) = v(t) +
F (t)

2m
∆t+

F (t+ ∆t)

2m
∆t,

(6.8)

where we used F = m · a. The scheme for the velocity Verlet algorithm is then given by:

1. Calculate the new positions r(t+ ∆)

2. Calculate the first part of new velocity v′ = v(t) + F
2m∆t

3. Calculate the forces F (t+ ∆) and the new positions r(t+ ∆)

4. Calculate the second part of the new velocity
and add it to the first v(t+ ∆) = v′ + F (t+∆t)

2m ∆t

For the analysis of the polymer simulation we look at the end-to-end distance Re, the
radius of gyration Rg and the hydrodynamic radius Rh. The end-to-end distance is simply
the distance between first and last monomer

Re = |r1 − rN |. (6.9)

The radius of gyration expresses the moment of inertia and is given by

R2
g =

1

N

N∑
i=1

(ri − rcom)2. (6.10)

A hydrodynamic radius Rh means the polymer has a comparable flow resistance to a sphere
with radius Rh and is calculated with

1

Rh
=

1

N2

N∑
i=1

N∑
j 6=i

1

|ri − rj |
. (6.11)
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These radii fluctuate since the polymer changes conformation over time. We thus are in-
terested in the expectation value of these observables. In order to get an approximation of
the true expectation value we run the simulation for a long time and take the time average
of the measurements made every integration loop.

Depending on the interactions between monomers and the properties of the solvent a
polymer will assume different conformations. Because of thermal fluctuations and the
volume of the monomers the polymer will never collapse into a single point, we can estimate
the radius of the polymer with

R ∝ (N − 1)ν (6.12)

where ν is the flory scaling exponent and N the number of monomers the polymer consist
of. The scaling exponent describes how the conformation of a polymer behaves and how the
radii such as the end-to-end distance grow with the number of monomers. One differentiates
between bad solvents with ν < 0.588 and good solvents with ν >= 0.588. For bad solvents
the net interaction between monomers is attractive and the polymer will therefore take
on a compact conformation with a small scaling exponent. For a good solvent the net
interaction is repulsive meaning the polymer will be more stretched out with a high scaling
exponent. For the system we chose we expect the behaviour of a good solvent because the
charged monomers will have a strong repulsive interaction with no additional salt present.

6.2 Results

We repeat the polymer simulations done by Schoell [27] with the now thermalised EK
model. We simulate polymers with a length of 3-50 monomers, at a constant monomer
concentration of 5mM. Each monomer has a charge of q = 1 apart from the counterions
neutralizing the system there are no extra salt ions present. We chose the same diffusion
coefficient as Schoell D = 6.51472 · 10−4 [x2]/[t], which is the diffusion of the ions of
potassium chloride (KCl). In the simulations done by Schoell the diffusion of the monomers
was set to be the same as the one for the ions, to compare our results we do the same. The
mobility of the monomers is set indirectly through the friction coefficient of the Lattice-
Boltzmann fluid γ. The Einstein-Smoluchoswski relation gives us

D = kBTµ (6.13)

where D is the diffusion coefficient and µ = 1
γ the mobility. With the diffusion coefficient

of the ions being 6.515 · 10−4 [x2]/[t] we get γ = 1535 [E][t]/[x2], if we want the diffusion
of the monomers to match. The simulation is not stable for such a huge friction, therefore
we follow Schoell and scale both diffusion and friction by a factor of 100 yielding D =
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6.515 · 10−2 [x2]/[t] and γ = 15.35 [E][t]/[x2] to get a stable simulation. All parameters
are also listed in table 6.2 and the unit system is defined in table 6.1. After an initial
equilibration of 106 time steps we let the simulation run for 107 time steps and measure
the observables every 1000 steps. These are the same simulations times that proved to be
reasonable in Schoells simulations. Fig. 6.3 shows the End-to-End distance Re, radius

Table 6.1: Unit system

Simulation unit SI unit

mass [m] 3.04 · 10−25 kg 1 kg

length [x] 2.5 Å 1 m

time [t] 2.14 · 10−14 s 1 s

energy [E] 4.14 · 10−21 J 1 J

charge [q] 1.602 · 10−19 C = 1 e 1 C

Table 6.2: Simulation Parameters

Parameter in simulation units in SI unit

time step 0.01[t] 2.14 · 10−15 s

box size 40− 98[x] 10−8 − 2.45 · 10−8 m

Number of Monomers 3-50

monomer concentration 4.7 · 10−51/[x3] 5mM

grid size 1[x] 2.5 Å

ion valency ±1[q] 1.602 · 10−19 C

lB 2.84[x] 7.11Å

Dions 6.515 · 10−2 [x2]/[t] 1.9 · 10−5cm2/s

σ (WCA) 1[x] 2.5Å

ε (WCA) 0.25[E] 0.625Å

∆r (FENE) 1.5[x] 3.74Å

K (FENE) 30[E]/[x2] 1.99 J/m2

of gyration Rg and the hydrodynamic radius Rh plotted over the number of bonds N − 1.
The estimated statistical errors are very small (< 0.1%) and thus not visible at the scale
of the figures. The added noise term does not show any relevant impact on the results.
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Figure 6.3: Comparison of the Scaling exponents of the end-to-end distance Re (red), radius of gyration Rg

(blue) and hydrodynamic radius Rh (green) for simulations with (diamonds) and without (circles) thermal
fluctuations in the ion fluxes.
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Figure 6.4: Comparison of the Scaling exponents of the end-to-end-distance Rg for the continuum based
simulations without thermalised ion fluxes done by Schoell [27] (blue) and this author (red) and the particle
based simulations done by Grass [13] and Grass et. al. [12] (green).
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Figure 6.5: Comparison of the Scaling exponents of the radius of gyration Rg for the continuum based
simulations without thermalised ion fluxes done by Schoell [27] (blue) and this author (red) and the particle
based simulations done by Grass [13] and Grass et. al. [12] (green).
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Figure 6.6: Comparison of the Scaling exponents of the hydrodynamic radius Rg for the continuum based
simulations without thermalised ion fluxes done by Schoell [27] (blue) and this author (red) and the particle
based simulations done by Grass [13] and Grass et. al. [12] (green).
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We also compare our results to Schoell [27] and the particle based simulations of Grass et
al. [13] [12] (see Figures 6.4-6.6). The in Tab. 6.3 listed scaling factors for the End-to-End
distance and the radius of gyration are still≈ 1, which represents a very linear conformation
we would only expect for a system with no counterions at all. The hydrodynamic radius
does not seem to follow the scaling behaviour for the simulated polymer lengths.
The counterions present should shield some of the electrostatic interaction between the
monomers giving us smaller scaling coefficients but the results do not reflects this. Instead
of further polymer simulations we focus on analysing possible problems with the model
that could lead to the shown results.

Table 6.3: Scaling coefficients, with(out) fluc. refers specially to the fluctuations of the ionic fluxes

This thesis

Scaling coefficient of Schoell [27] Grass et al. [13][12] With fluc. Without fluc.

Re 1.05 0.84 1.08 1.08

Rg 0.98 0.81 1.03 1.03

Rh 0.63 - 0.77 0.77

6.3 Problem analysis

Through the analysis of the polymer simulations a problem with the electrostatic inter-
action between the MD particles and the ionic species of the EK model was found to be
a possible source for the incorrect results. Specifically the mapping of the point charges
to the discrete EK model turns out to be highly problematic for systems in which the
distances between point charges are in the order of only one or two lattice lengths. The
current implementation maps the charge density of the particle to surrounding EK cells
while conserving the centre of mass (see Figure 6.2).
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Figure 6.7: Mapping of a point charge (Red circle) to the cells of the EK model. The dashed lines indicate
the borders of the cells associated with the lattice nodes (grey circles). Left: The point charge sits exactly
on a lattice node. Right: The point charge sits in between cells, which means the charge will be distributed
between the four surrounding cells.
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Figure 6.8: On the left side the point charges sit exactly on a lattice node and on the rights side the point
charges sit in between cells. The dashed lines indicate the cells with the lattice nodes in their center (grey
circles)
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Figure 6.7 shows the mapping in two dimensions for a point charge sitting in the exact
center of a cell and for a point charge sitting on a corner. In our polymer simulations
we expected the counterions to accumulate around the charged monomers, shielding the
monomers from the electrostatic interaction with each other. The simulations showed
nearly completely stretched polymers, because the incorrect electrostatic forces led to a
smaller accumulation of counterions and therefore a stronger repulsion between monomers.

In order to investigate this problem we look at a simple system consisting of two particles
with charge q and an electrokinetic species with charge −q neutralizing the system. The
particles are fixed in space, any interactions with the background fluid and the fluctuations
of the counterions are switched off. We only consider the electrostatic interactions, for the
interaction between particles we again use the P3M method. We measure the force acting
on the particles when both are placed in the centre of a cell and when both are placed on
the corner of a cell (see Fig. 6.8).
In the following Figures a negative force is defined to be a force pointing towards the other
particle, so it is an attractive force between the particles and a positive force means the
two particles repel each other.
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Figure 6.9: Force on the particles caused by the counterions. A negative force points to the other particle,
meaning the particles attract each other. For the center case more counterions accumulate around each of
the particles resulting in a stronger attractive force.
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Figure 6.10: Total force on one of the particles resulting from the electrostatic interaction. A positive
force points away from the other particle, meaning the particles repel each other. For the corner case the
counterions do not properly shield the electrostatic repulsion between the two particles resulting in a net
repulsive force.

Figure 6.9 shows the force on the particles resulting only from the counterions. There is
a very noticeable difference between the two cases. The counterions accumulating around
both particles result in an attractive force between the particles. The force is several times
larger for the center case showcasing that more counterions accumulate around the particles
if placed in the center of a cell.
Figure 6.10 shows the total force on the particles caused by the particle-particle interaction
and the interaction with the counterions. We again see a big difference between the two
cases. For the center case the attractive force caused by the counterions and the repulsive
force caused by the electrostatic interaction of the two particles with each other compensate
each other. This results in a small total force even for small distances. For the corner case
we get a strong repulsive force since the attractive force is a lot smaller as shown in Fig.
6.9. Only for a distance of nine cells between the particles the force approaches the same
value. For the polymer simulations described in the previous section the typical distance
between monomers was about a single cell size making this problem very relevant.
We repeat the two particle simulation with better resolutions. An increase in resolution
should be able to give better results, but as Fig. 6.11 shows we would need to use an eight
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times higher resolution to reach an acceptable error. Considering the time such a simulation
would take with the current implementation of the EK model this would make the model
slower than a simulation using particle ions even for very high salt concentrations. Further
investigations and improvements are needed.
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Figure 6.11: Relative difference of total force on a particle for the corner and the center case for different
resolutions.
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Chapter 7

Conclusion and Outlook

Not explicitly simulating every ion in a system and instead including them through a
continuum model provides a significant advantage for the simulation of huge systems. A
continuum model such as the one discussed in this thesis can provide help in understanding
and predicting the dynamics and properties of polymers like DNA or proteins and other
systems where all atom simulations are very limited by computational power.
We investigated the thermalisation of a continuum model for ion species first introduced
by Capuani et. al. [4]. A noise term derived from independent Brownian motion of the
particles was introduced. We implemented the fluctuations into the existing electrokinetic
solver of the ESPResSo simulation package. We utilize CUDA capable GPUs for the mas-
sive computational power these devices represent. A new discretization was also introduced
and implemented.
We showed that the validity of the discussed thermalisation is limited for small densities,
which is expected since the Poisson distribution our fluctuations reproduce no longer re-
sembles a continuous function in such systems. The chosen statistical mechanic approach
is poor in situations in which we have less than one particle per cell.
We verify the thermalisation by investigating two test systems for which we either provide
an analytical solution or compare results with a MD simulation also done using ESPResSo.
The simplest system is an ideal gas for which we expect the density to have a binomial
distribution or in certain limits a Poisson distribution. The other system is a gas consisting
of two oppositely charged species, with no other forces or potentials outside of the electro-
static interaction. For both system we were able to show good agreement with either an
analytical solution or a MD simulation.
The discretization was investigated by simulating a point source like system and comparing
it with the analytical solution and the previously implemented stencil. The results again
match very well.
We simulated a model of coarse-grained polyelectrolytes and analysed the scaling coef-
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ficients for end-to-end distance, radius of gyration and the hydrodynamic radius. Such
simulations were already done by Schoell [27] using the previous implementation of the
model, but the obtained values for the scaling coefficients were not matching the correct
physical behaviour. A repeat of the simulation with the now thermalised counterions
yielded the same results showing no significant impact of the fluctuations. The actual
source of these errors was tracked down to be a problem concerning the electrostatic inter-
action of the monomers (MD Particles) and the counterions, which are handled by the in
this thesis discussed continuum model. The problem emerges from the mapping of point
charges to the lattice of the electrokinetics solver. Depending on the position of a point
charge in relation to the lattice the charge will be distributed between different numbers of
nodes leading to significant errors for short range interactions. The problem can in theory
be compensated by increasing the resolution and making sure that monomers are several
lattice lengths apart, but computational time becomes a big concern.
An adaptive refinement method allowing us to only increase the resolution for the rele-
vant area containing the polymer could make simulations times tolerable again. Recently
Tischler [28] worked on adaptive Electrokinetics running on CPUs and in the future an im-
plementation utilizing the computational power of GPUs is possible. The implementation
of the fluctuations is also not fully optimized yet giving another starting point to reduce
simulation times. To summarize, the proposed Electrokinetics model with the added noise
term in the ion fluxes is now fully thermalised, but further investigations and optimiza-
tions regarding the limitations for low densities and the coupling with Molecular Dynamic
particles are needed.
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