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Zusammenfassung

Das Verstehen und Vorhersagen des Verhaltens von Fluiden ist ein sehr komplexes
Thema, für das noch immer fundamentale Fragen ungelöst sind. Die beschreibenden
partiellen Differentialgleichungen sind bekannt als die Navier-Stokes Gleichungen, de-
ren mathematische Formulierung abhängig von den Eigenschaften des Fluids leicht
abweichen können. Seit über einem Jahrhundert schon sind diese Gleichungen be-
kannt, jedoch sind sie notorisch schwer zu lösen, weshalb nur wenige analytische
Lösungen für sehr spezielle Systeme bekannt sind. Deshalb sind in den letzen Jahr-
zehnten numerische Löser populär geworden, welche verschiedene Lösungstechniken
verwenden und somit für verschiedene Längenskalen geeignet sind. In den vergan-
genen Jahrzenten wurden verschiedene Modelle entwickelt, um diese numerischen
Löser zu erweitern, insbesondere ist die Erweiterung auf mehrphasige/mehrkompo-
nentige Fluidsysteme von Relevanz für das Verständnis von derartigen Systemen.
Zusätzlich zu den mehrkomponentigen Systemen können gelöste Ionen z.B. Salz, das
Verhalten der Fluide beeinflussen. Die Modellierung dieser gelösten Ionen kann auf
verschiedenen Längenskalen geschehen und ist abhängig von der zu untersuchenden
Längenskala, welche von der Simulation einzelner Ionen bis hin zu kontinuierlichen
Dichtebeschreibungen reichen kann. Beispiele, die den Einfluss der Salzkonzentration
auf das Fluidverhalten zeigen sind Öltropfen in Salzwasser, welche durch elektri-
sche Felder getrieben werden oder die Veränderung des Benetzungsverhalten von
Öltropfen durch das gelöste Salz. Das letztere Beispiel tritt insbesondere bei der Ex-
traktion von Öl aus Ölfeldern auf. Hierbei werden verschiedene Methoden unter dem
Namen

”
Enhanced Oil Recovery“ zusammengefasst, welche das Ziel der Erhöhung

der extrahierten Ölmenge vereinen. Einer dieser Methoden ist unter dem Namen
Low-Salinity Flooding [1] bekannt, bei der die Ölfelder mit Salzwasser mit geringer
Salzkonzentration geflutet werden um das Rohöl zu extrahieren. Die auftretenden
physikalischen Mechanismen bei dieser Methode sind nicht vollständig verstanden,
weshalb verschiedene Laborexperimente und Simulationen durchgeführt wurden. Ei-
nes dieser Laborexperimente ist von Mahani et al. [2], welche einen Öltropfen auf
einer Tonablagerung in umgebender Salzlösung verschiedener Salzkonzentration un-
tersuchen. Hierbei stellten sie fest, dass das Benetzungsverhalten und damit auch
der Kontaktwinkel des Öltropfens mit fallender Salzkonzentration abnimmt und der
Tropfen sich nach mehreren Tagen der Beobachtung von der Tonablagerung ablöst.

Ein numerischer Löser für die Navier-Stokes Gleichung ist die Gitter-Boltzmann
Methode, welche ihre Wurzeln in der Boltzmann-Gleichung hat. Diese Methode kann
durch verschiedene Modell für mehrkompoentige Fluide erweitert werden, dazu zählen
das Shan-Chen-Modell, das Free-Energy oder das jüngere Color-Gradient Gitter
Boltzmann Modell. In dieser Arbeit wird das Shan-Chen-Modell verwendet und an
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einen diskreten Gitter Elektrokinetik Löser gekoppelt, welcher die Nernst-Planck
Gleichung für die Ionendichten löst. Für die Diskretisierung der Nernst-Planck Glei-
chung auf einem kubischen Gitter wird ein finites Volumen-Verfahren verwendet.
Die Kopplung dieser beiden Methoden beinhaltet die Reibungskopplung der Fluide
an den Ionenstrom, die Advektion der Ionen durch das Fluid und die chemischen
Eigenschaften der Fluidkomponenten durch das chemische Potential.

In dieser Arbeit wird das beschriebene Modell für das mehrkomponentige Fluid-
modell in einem Code-Generations Framework namens pystencils [3] implementiert,
welches in der Lage ist hochoptimierten Quellcode für gitterbasierte Algorithmen
aus mathematischen Beschreibungen zu erzeugen. Für die Gitter-Boltzmann Metho-
de existiert bereits eine eigene Erweiterung names lbmpy [4], welche speziell für die
Erzeugung von Quellcode für Gitter-Boltzmann Algorithmen entwickelt wurde und
ebenfalls pystencils als Grundlage verwendet. Basierend auf dem gleichen Frame-
work wird ebenfalls der Gitter Elektrokinetik Algorithmus implementiert, welcher
einen Löser für die elektrostatische Poisson-Gleichung als auch die Nernst-Planck
Gleichung beinhaltet. Diese Implementation wird an verschiedenen physikalischen
Systemen auf ein korrektes physikalisches Verhalten getestet und anschließend dazu
verwendet, den Einfluss der Salzkonzentration und verschiedenen anderen Parame-
tern auf die Oberflächenspannung eines Öltropfens in Wasser zu untersuchen.
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1. Introduction

Studying the flow of fluids is an important topic in physics and engineering and is of-
ten crucial in understanding physical phenomena. The partial differential equations
describing fluid motion are the Navier-Stokes equations. They have different mathe-
matical formulations depending on the properties of the fluid and are valid for a wide
range of length scales. Despite the fact that the equations have been known for over
a century they are difficult to solve and analytical solutions are known only for a few
problems. This is why numerical solvers have become popular in the past decades
where different methods have been developed to resolve different length scales. One
of these solvers is the Lattice Boltzmann (LB) Method which is used in this work.
Especially of scientific interest is currently the computation of multiphase/multicom-
ponent fluid systems which can include phase transitions or mixtures of different fluid
components. These systems can also be simulated with the LB Method by multiphase
extensions, e.g. the Shan-Chen, Color-Gradient, or Free-Energy LB models.

In most real-world experiments the ion concentration in the fluid phases is non-zero
and can alter the flow of the fluid. To include ion effects in the simulation the length
scale of interest is important which can range from the observation of individual
ions with can be simulated with particle based Molecular Dynamics to ion density
descriptions which are formulated by solving the Nernst-Planck equation.

One fluid system of interest related to this work are oil droplets surrounded by
brines of different salinity in a porous environment. These systems are especially
relevant for the oil extraction from oil fields where different methods are grouped
under the name Enhanced Oil Recovery. All of these methods have the common goal
to increase the yield of oil extracted from the fields. One of such a technique is the
Low-Salinity Flooding [1] where the oil reservoir is flooded with low salinity water.
The exact mechanisms used during this enhanced recovery method are not well un-
derstood. Therefore several experiments have been performed under lab conditions,
one of them the work by Mahani et al. [2] where the contact angle of oil droplets on
clay patches is measured after exposure to brines of different salinities. In their work,
they observe that the change in salinity also changes the contact angle, which in their
set-up, causes the oil droplets to detach from the clay patches on the timescale of
days.

In this work, a mesoscopic multicomponent fluid model including salt ions is imple-
mented and tested for several physical systems. The multicomponent nature of the
fluids is modeled with the Shan-Chen model. The salt ions that are simulated with
a grid-based discretization scheme of the Nernst-Planck equation that is coupled to
the Shan-Chen LB model, known as the lattice electrokinetics method. The coupling
between the two models is realized via a friction coupling between the ion fluxes, the
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advection of the ions through the movement of the solvents, as well as the the solvent
chemical potential that describes the chemical nature of the solvents. This model is
then used for a first numerical investigation of the effects of the salt on the surface
tension of an oil-brine system.
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2. Theory

In this section a short introduction to the low-salinity water flooding is provided.
We moreover present the mathematical fundamentals to the modeling techniques
and methods, where we focus on providing a full description of the equations and
highlight the discretization techniques involved in the solution process.

2.1. Introduction to Low-Salinity Water Flooding

To increase the amounts of extracted oil from oil reservoirs is economically of great
interest, and one would like to gain a basic understanding of the underlying physical
mechanisms. The technical extraction process consists of several steps, the first
primary oil recovery step uses the pressure inside the oil field which is strong enough
to push the oil inside the wellbore from where it can be pumped to the surface
mechanically. This step on its own leaves a portion of the oil in the field which
can be extracted using enhanced oil recovery techniques that are only applied if
they are economically reasonable and therefore depend on a wide variety of variables
included local availability of resources and the current oil price. There exist different
techniques for enhanced oil recovery: thermal treatment of oil which is aiming for a
reduced viscosity of oil or injecting fluids which are supposed to influence the porous
media-oil interactions where polymer flooding or water flooding are examples for [1,
5]. The efficiency of the techniques applied depend strongly on the local properties of
the oil field and also on the local accessibility of the required resources. The latter is
the reason that the water flooding technique is applied because of the high availability
and the low cost. However, for this technique the exact mechanisms are not exactly
understood, and are subject to ongoing theoretical and experimental works. One of
the observed experimental results is the dependency of the yield of oil on the salt
concentration present in the water used for the flooding, showing that high salinity
brine is less effective compared to low salinity brine [5] which is why the technique
is called low-salinity water flooding.

The laboratory scale experiments focus on single aspects which can elucidate the
influence of the brine in the oil recovery process. One of such experiments was
performed by Mahani et al. [2] and investigates the change in the wetting state of
oil droplets when exposing them to brines of different salinities. In the experiment
they investigated the contact angle of an oil droplet on a clay patch over time while
diluting the surrounding salinity of the brine from high (HS) to low salinity (LS). For
the experiment a glass plate was used on which clay patches are put on. According
to the authors the clay patches were used to mimic conditions in sandstone oil fields.
On top of the clay patches oil droplets were placed and the whole set-up was exposed
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to high salinity brine. After a specific observation time the brine was replaced with
low salinity brine and the relaxation process was observed again until the droplet
detached from the clay patch. The droplet was observed with a camera and the
contact angle was measured from the video footage. A series of snapshots of the
experimental set-up is shown in Figure 2.1. The resulting contact angle over the
time curve is shown in Figure 2.2.

Figure 2.1.: Images of experimental set-up for contact angle measurements of oil
droplets on clay patches exposed to high salinity (HS) brine and low
salinity (LS) brine. The colors correspond to the salinity and the num-
bers refer to stages of the detachment process which were defined in the
corresponding paper [2].

In all cases in the experiment the oil droplet detached from the clay patches which
is the end of the contact angle measurement lines.
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(a) (b)

Figure 2.2.: Measured contact angle curves over time starting at high salinity brine
and exchanged with low salinity brine at the vertical blue line. The
dilution factor from HS to LS brine is four for (a) and eight for (b). The
different colors correspond to different samples taken and the individual
curves end with the detachment of the droplets. [2]

2.2. Fluid Dynamics with the Lattice Boltzmann Method

When describing the behavior of a fluid in simulations there can be different length
scales of interest depending on the quantity of interest. An illustration of the different
possible length scales is shown in Figure 2.3.

The smallest scale possible is the microscale which is suitable for problems requiring
the trajectories of individual atoms or molecules but is limited to small systems and
time scales due to the increasing number of atoms which have to be treated when
the system size increases. In these systems Newton’s equation of motion are solved
individually for each particle. The equation reads

m~̈x = −~∇V (~x) (2.2.1)

which relates the acceleration ~̈x to the applied forces given by the gradient of the
potential V (~x), where m is the mass of the particle. Systems on these length scales
are typically solved using Molecular Dynamics, using an integration scheme in time.
[7]

The other end of possible length scales is formed by the macroscale. On this length
scale the fluid is described as a continuous medium using density and velocity fields.
This can be done because the atomistic nature of the individual particles is negligible
on these large length scales. The quantities of interest on this scale are the density
or velocity which are connected by the Navier-Stokes Equation which reads for an
incompressible Newtonian isotropic fluid

ρ

(
∂~v

∂t
+ (~v · ~∇)~v

)
= −~∇p+ µ∆~v + ~f (2.2.2)
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Figure 2.3.: The length and time scales typically present in fluid dynamics simula-
tions, reaching from the description of individual atoms to a continuum
description using density fields. [6, p. 12]

where % is the density, ~v the fluid velocity, p the pressure and ~f the external force
density.

The length scale between the two extremes is described as the mesoscale which
describes the transition regime. On this scale the individual trajectories of particles is
neglected but the atomistic nature is not fully negligible. This is why the description
is performed statistically which is further discussed in the following section.

2.2.1. Introduction to Kinetic Theory of Gases

The kinetic theory of gases describes the behavior of molecules in a statistical way by
introducing the distribution of particles in a specific volume. This is especially well
suited for systems of interest in the previously discussed mesoscopic length scale.

The key variable of the kinetic theory of gases is the particle distribution func-
tion f(~x, ~ξ, t) and it describes the density of particle at the position ~x at the time t
with the velocity ~ξ. This quantity contains only the statistical behavior of molecules
or atoms and is connected to physical quantities mass density %, momentum density
given by the product of the mass density and the velocity ~v and the total energy
density E in the following way:

6



%(~x, t) =

∫
f(~x, ~ξ, t)d~ξ (2.2.3a)

%(~x, t)~v(~x, t) =

∫
~ξf(~x, ~ξ, t)d~ξ (2.2.3b)

%(~x, t)E(~x, t) =

∫
|~ξ|2f(~x, ~ξ, t)d~ξ. (2.2.3c)

The governing evolution equation of the distribution function is the Boltzmann Equa-
tion which is given by the total derivative of the particle distribution function

df

dt
=
∂f

∂t
+ ~ξ · ∂f

∂~x
+
~F

%
· ∂f
∂~ξ

= Ω(f), (2.2.4)

where Ω is known as the collision operator. This operator describes the local
changes of the particle distributions due to particle collisions. It relaxes the dis-
tributions towards an equilibrium distribution which is dependent on the system
of interest, which is typically the Maxwell-Boltzmann distribution. This collision
operator has to fulfill physically motivated restrictions on the conservation of the
previously shown moments in Equation (2.2.3) which are known as the conservation
of mass, momentum and energy. Only a few collision operators are known analyti-
cally: the collision operator for non-interacting particles is trivially vanishing since
the particles do not interact. Another analytical solution is known if the particles
interact as hard spheres and only collide in pairs. The assumption of pairwise colli-
sions is reasonable in the case of a dilute monoatomic gas [6]. In general the collision
operator cannot be expressed exactly which is why approximations have to be made
to be able to work with the Boltzmann equation.

2.2.2. Introduction to Lattice Boltzmann

The Lattice Boltzmann Method is rooted in the previously discussed kinetic theory
of gases in Section 2.2.1 but is not a direct solver for the Boltzmann equation (2.2.4).
The statistical description of the particle distributions can be used to recover the
solution to the Navier-Stokes Equation which can be shown with the Chapman-
Enskog expansion.

In the previous Section 2.2.1 the fundamental population function f(~x, ~ξ, t) was
discussed which describes the number of particles at the position ~x at the time t which
are moving with the velocity ~ξ. This quantity is discretized in the Lattice Boltzmann
Method on a grid on all three arguments which means that not only space and time
but also the velocity is discretized. The resulting fundamental quantity is therefore
the discrete-velocity distribution function fi(~x, t). The velocity argument has been
moved to the index i which is convenient to do and corresponds to the discrete velocity
vector ~ci. The moments of the distribution function in Equation (2.2.3) can also be
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written for the discretized population function by adapting to the discretization of
the velocities by transforming the integral into a discrete sum

%(~x, t) =
∑

i

fi(~x, t) (2.2.5a)

%(~x, t)~v(~x, t) =
∑

i

~cifi(~x, t). (2.2.5b)

The velocities ~ci are grouped in a set of velocities {~ci} which contains all discrete
velocities. These velocities are chosen in such a way that each velocity ~ci exactly
reaches the next lattice cell within one unit of time ∆t. Therefore, the unit of the
velocities is space over time and reads for a cubic grid ∆x

∆t . This also means that
formally multiplying the vector ~ci with a timestep ∆t results in a vector that is the
positional offset from one lattice cell to the neighboring one. They are referred to
with the symbols ~ei and define the unit of length ∆x. These offset vectors also appear
in discretizations like the finite difference discretization and there these vectors are
called stencil which is the reason this term is sometimes also used to describe the
set of velocities. A visual illustration of the vectors is shown in Figure 2.4. The last
remaining unit in the set of units is the unit of mass ∆m, these units are called lattice
units and are convenient to use in the context of Lattice Boltzmann simulations.

Figure 2.4.: Illustration of the discrete velocities used in the Lattice Boltzmann
Method. In this case 19 velocities are used which form the ‘D3Q19’-
stencil. The velocities pointing to the center of the volume faces are of
unit length and drawn in black and the velocities pointing to the edge
of the volume faces are drawn in gray. All vectors, including the vector
of zero length, are part of the set {~ci}.

The size of the velocity set is dependent on the dimensionality and the accuracy
of the discretization. It typically includes velocities to the direct and the diagonal
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neighbors. These sets are named with the following scheme DdQq where d is the
dimensionality and q is the number of discrete velocities. The sums in this chapter
which are indexed with i always run over all discrete velocities which corresponds to
the number q in the set of velocities used. Commonly sets used are D2Q9, D3Q19 or
D3Q27 where a higher number of velocities typically corresponds to a higher accuracy
of the discretization but comes with higher computational cost. The mathematical
formulation of the vectors is shown as an example for the set D3Q19 which can be
written as

~ci =
∆x

∆t





(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, . . . , 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, . . . , 18

. (2.2.6)

Each of the velocity sets is associated with a speed of sound cs that is in the most
common cases cs = 1√

3
∆x
∆t . This speed of sound is related to the pressure in the fluid

with the equation of state

p(~x) = c2
s%(~x). (2.2.7)

The discretization of the Boltzmann equation on the lattice, the Lattice Boltzmann
equation, reads

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t) + Ω̂i(~x, t). (2.2.8)

This equation consists of two parts which can be interpreted individually. The first
part of the right hand side of Equation (2.2.8) is known as the streaming-step. It
describes the movement of the populations fi in one timestep ∆t. The population
is propagated from one grid point to the next one where the target points are given
by the corresponding velocity ~ci multiplied with the timestep ∆t. An illustration of
this operator for a single grid point in two dimensions is shown in image 2.5. This
streaming step is applied for each and every grid cell for each timestep.

The second part of Equation (2.2.8) is called the collision operator Ω̂i. As already
described in Section 2.2.1 it redistributes the populations fi of the discrete veloc-
ities ~ci and is supposed to mimic the collision of particles. An illustration of the
redistribution is shown in Figure 2.6.

Most of the approximations in this method have to be made for this operator
due to the difficulties with the analytical solution which were already discussed in
Section 2.2.1.

Many different collision-operators can be found in the literature which typically
become more and more complex by providing increasing degrees of freedom which can
be tuned individually on different physical parameters. Furthermore they typically
also increase the stability of the algorithm. All of the collision operators have in
common that they conserve the local density % and the local momentum %~v. In this
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stream

Figure 2.5.: Image showing the streaming-step for a single grid point with the D2Q9
velocity set. The density of the populations are shown as the magnitudes
of the vectors and the directions are given by the discretized velocities.
The streaming step is moving the populations to the neighboring grid
points which is shown on the right.

Ω̂

Figure 2.6.: Image showing the collision-step for a single grid point with the D2Q9
velocity set. The magnitudes of the vectors illustrate the density of the
corresponding population. The collision operator redistributes the local
populations towards the equilibrium while preserving the macroscopic
quantities formulated in Equation (2.2.5a) and (2.2.5b).

work we use the most simple collision-operator which is known as the Bhatnagar-
Gross-Krook (BGK) operator. It relaxes the local populations towards an equilibrium
fi at a fixed rate given by the relaxation time τ . The equation reads [8]

Ωi(~f) = −fi − f
eq
i

τ
∆t (2.2.9)

and the equilibrium distribution is given by

f eq
i (~x, t) = ωi%

(
1 +

~v · ~ci
c2

s

+
(~v · ~ci)2

2c4
s

− ~v · ~v
2c2

s

)
, (2.2.10)

where the positional and time dependency of the velocity and density is not ex-
pressed explicitly.

The connection between the Navier-Stokes Equation and the Lattice Boltzmann equa-
tion can be made by the Chapman-Enskog expansion [9]. The expansion itself is
tedious and well established in the literature, a well written example can be found
in [6, Section 4]. The expansion can be performed for each collision operator and
reveals the relations between input parameters of the collision operator and physical,
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macroscopic quantities in the Navier-Stokes Equation. The BGK collision operator
only has one free parameter, the relaxation time τ , which is related to the kinematic
shear viscosity ν

ν = c2
s

(
τ − ∆t

2

)
. (2.2.11)

More complex collision operators with more parameters typically have more degrees
of freedom which can be tuned individually to match physical quantities.

The propagation of the populations fi is performed with the two introduced op-
erators which are applied in succession. First the populations are relaxed with the
collision operator Ω̂i. This application of the operator can be written as

f∗i (~x, t) = fi(~x, t)

(
1− ∆t

τ

)
+ f eq

i (~x, t)
∆t

τ
, (2.2.12)

where f∗i (~x, t) are the populations after the application of the collision operator.
Afterwards the streaming step is performed which can be expressed with the updated
populations as

fi(~x+ ~ci∆t, t+ ∆t) = f∗i (~x, t). (2.2.13)

The application of the two operators are repeated, one application of both operators is
what is known as a time step. Each of the introduced operators is only dependent on
local values which is trivial to see for the streaming operator because only neighboring
populations need to be known. For the collision operator this can be seen from the
definition of the equilibrium distribution (2.2.10) which only depends on the local
density % (2.2.5a) and the local velocity ~v (2.2.5b) which both only depend on the
local populations fi. This locality feature is the reason that the Lattice Boltzmann
Method is well suited for parallelized computing.

2.2.3. Forces in the Lattice Boltzmann Method

The previous derivation of the Lattice Boltzmann equation in Section 2.2.2 is the
force-free Lattice Boltzmann equation. There are different ways known to include
external body forces to the Lattice Boltzmann equation, in this section one possible
way to include external forces is shown which is used in this work.

The chosen scheme to include forces is the Guo forcing scheme [10] which is shown
for the previously introduced BGK collision operator (2.2.9). It is a forcing scheme
with a second-order accuracy for both space and time that also has been developed for
more complex collision operators like the Multi-Relaxation-Time collision operator,
the derivation for it can be found in [11].

The inclusion of the force is done with a source term in the Lattice Boltzmann
equation which is added to the collision operator

fi(~x+ ~ci∆t, t+ ∆t)− fi(~x, t) = Ω̂i(~x, t) + F̂i(~x, t)∆t (2.2.14)
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where the force operator F̂i(~x, t) is defined as

F̂i =

(
1− 1

2τ

)
ωi

[
~ci − ~v
c2

s

+
(~ci · ~v)

c4
s

~ci

]
· ~F . (2.2.15)

In this equation ωi are weights associated with the lattice velocities ~ci. These weights
are chosen in such a way that the lattice velocity obeys a sufficient amount of rota-
tional lattice isotropy. This can be formulated with the following equations [6, p. 85,
Equation 3.60]

∑

i

ωi = 1
∑

i

ωiciα = 0

∑

i

ωiciαciβ = c2
sδαβ

∑

i

ωiciαciβciγ = 0 (2.2.16)

∑

i

ωiciαciβciγciδ = c4
s (δαβδγδ + δαγδβδ + δαδδβγ)

∑

i

ωiciαciβciγciδciε = 0.

The solution for the weights can be found in [6, p. 88, Table 3.1] which are all given
for the most common speed of sound of cs = 1√

3
∆x
∆t .

In the forcing scheme also the fluid velocity ~v for both the equilibrium populations
f eq
i in Equation (2.2.10) as well as the macroscopic velocity is extended by the acting

body force and reads

~v =
1

%

∑

i

~cifi +
~F∆t

2%
. (2.2.17)

This redefinition ensures the previously mentioned second order time and space ac-
curacy, which arises due to the way the streaming and collision operations are per-
formed. The mathematical form of the force operator F̂ is determined by a power
series expansion of the force in the particle velocity [10].
The calculations of this additional source operator in the algorithm is typically in-
cluded in the calculations of the collision step, which was introduced in Section 2.2.2.

2.2.4. Boundary Conditions

Boundary conditions have a crucial influence on the solution of differential equations
which is also the reason of the importance to the simulations. There are a wide
variety of boundary conditions known in the literature, in this work we will only
discuss two of the most used ones.

Periodic Boundary Condition

An often used boundary condition are the periodic boundary conditions. With this
boundary condition the simulation domain is periodically repeated in the desired
directions. The fluid flow leaving the simulation domain on one end enters again on
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the opposite side of the domain. This is especially useful to simulate bulk systems
which can be approximated by repeating a small part of the simulation domain
periodically in one direction, which is a common scenario in the fluid simulation. The
term “approximated” is used in this case because only in the mathematic description
a system can be infinitely large, when comparing to laboratory experiments systems
are always of finite size. Nevertheless this approximation is often accurate enough
to capture the desired effects which have to appear on length scales smaller than the
system size. Another reason for the frequent use of this boundary condition is that
it allows to reduce the size of the simulation domain which significantly decreases
the computation time because of the lower amount of operations which have to
be performed for each timestep. Technically the periodic boundary conditions are
typically implemented with ghost layers which are additional cells on the edges of
the simulation domain. These additional cells can be used to copy the first layer
of the periodic images to these cells which allows the “implementation” of periodic
boundary conditions with a simple copy operation and does not need a change in the
streaming/collision kernels.

No-Slip Boundary Condition

The No-Slip boundary condition is applied when the fluid on the surface is sup-
posed to have zero velocity. Mathematically this translates to a Dirichlet boundary
condition of zero velocity at the wall:

~v|~x∈{wall} = ~0. (2.2.18)

The approach taken in this work to fulfill this zero surface velocity condition is
known as the half-way bounce back method. In this method the populations fi which
correspond to lattice velocities ~ci pointing into the wall are reflected back to the
lattice node they came from during the streaming step with the lattice velocity -~ci.
An illustration of this process is shown in Figure 2.7.

~v = ~0

fluid

wall

stream

Figure 2.7.: Schematic illustration of the half-way bounce back implementation for
a no-slip boundary condition. On the left the pre-streaming situation is
shown and on the right the post-streaming situation. The populations
of lattice velocities ~ci that are pointing into the wall are reflected back
during the streaming step.
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This approach of reflecting the populations pointing into the wall formally results
in the zero-velocity halfway in between the boundary lattice point and the fluid
lattice point as it is also illustrated in Figure 2.7. Due to the reflecting nature of the
boundary handling the total density in the system stays conserved since the value
of the population is only transferred but the total momentum of the fluid is not
conserved because the direction of the velocity changes. The missing momentum in
the fluid is absorbed by the boundary cell, which is fixed in space in the simulations
causing the loss of momentum.

2.3. Multiphase Fluid Model: Shan-Chen

The previous introduction to the Lattice Boltzmann Method in Section 2.2.2 is only
capable of simulating fluids of a single phase. To simulate fluids of multiple phases or
components the method has to be extended. In this work the Shan-Chen method [12,
13, 14] is used which was proposed in 1993. This model introduces a pseudopotential
resulting in an external force on the fluids. Two variations of the model can be used
which are known as the multiphase and the multicomponent variations which differ
in the amount of distinct fluid phases which have to be simulated.

2.3.1. Introduction

The basis of the Shan-Chen multiphase models is the definition of the pseudopoten-
tial, which has the same mathematical form for both the mentioned versions. The
definition of the force reads

~Fσ,σ′(~x, ~x
′) = −Gσσ′(~x, ~x′)ψσ(~x)ψσ′(~x

′)
(
~x′ − ~x

)
. (2.3.1)

where the subscript σ denotes the fluid component, Gσσ′(~x, ~x
′) is an interaction

function, sometimes also called Green’s function in the literature, and ψσ(~x) defines
the effective fluid density of component σ at the position ~x which will be discussed
later, for the moment it can be seen as the fluid density. In the literature the
interaction function Gσσ′ is typically defined as

Gσσ′(~x, ~x
′) := Gσσ′(

∣∣~x− ~x′
∣∣) =

{
Gσσ′ωic

2
s |~x− ~x′| = ~ei

0 else
, (2.3.2)

which incorporates only the nearest-neighbors into the potential calculation which
are described by the lattice vectors ~ei and the corresponding weights ωi. The number
of neighbors included in the calculation is in general a trade off between computa-
tional cost and discretization accuracy which also influences the strength of model
artifacts. The reason for including only the nearest-neighbors is to keep the locality
feature of the Lattice Boltzmann Method which was introduced in Section 2.2.2.

The definition of the interaction function shown in Equation (2.3.2) leaves an
interaction constant Gσσ′ which is dependent on the interacting fluid components
and can be either positive or negative for a repulsive or attractive fluid interaction,
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respectively. The total force on fluid component σ at the lattice position ~x is then
given by the summation over all lattice positions ~x′ and all fluid components σ′. By
substituting in Equation (2.3.2) the total force reads

~Fσ(~x) = −ψσ(~x)
∑

σ′

Gσσ′c
2
s

∑

i

ωiψσ′(~x+ ~ei)~ei. (2.3.3)

A sharp look at the discretization from Equation (2.3.3) reveals that the formula can
be seen as a Taylor-expansion of the term

~Fσ(~x) ≈ −
∑

σ′

Gσσ′c
2
sψσ(~x)~∇~x′ψσ′(~x′) (2.3.4)

including the first layer of neighbors, which corresponds to a second order expan-
sion. This observation is used later to extend the original model (Section 2.3.5) and
reduce some of the drawbacks which come with this model. The presence of the
pseudopotential is especially relevant at fluid-fluid interfaces which causes a constant
force on the fluids even when in equilibrium. This additional force also enters the
Chapman-Enskog expansion and alters the equation of state of the system which now
reads [15]

p(~x) =
∑

σ

c2
s%σ(~x) +

c2
s

2

∑

σ,σ′

Gσσ′ψσ(~x)ψσ′(~x). (2.3.5)

The first term is the ideal-gas contribution which can also be seen in the equation
of state of the classical Lattice Boltzmann Method (Section 2.2.2) and the second
contribution is the result of the pseudopotential.

In the case of using the multi-component version of the Shan-Chen method, to
keep the second order accuracy in space and time from the Guo forcing scheme,
which was introduced in Section 2.2.3, the velocity of the fluid has to be changed
to the barycentric velocity for both the equilibrium velocity as well as the velocity
solving the Navier-Stokes Equation [6, 15]. It is given by

~vb(~x, t) =
1

%(~x, t)

∑

σ

(∑

i

fσ,i(~x, t)~ci +
~Fσ(~x, t)∆t

2

)

=
1

%(~x, t)

∑

σ

(
%σ(~x, t)~vσ(~x, t) +

~Fσ(~x, t)∆t

2

)
, (2.3.6)

where fσ are the populations of the component σ and the density %σ(~x, t), the
density without the subset %(~x, t) is the total density given by

%(~x, t) =
∑

σ

%σ(~x, t). (2.3.7)

The force ~Fσ(~x, t) includes all forces on the fluid, the Shan-Chen interaction force as
well as external forces. This formula expresses the total fluid velocity as the individual
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fluid velocities (2.2.17) corrected by the force acting on them and weighted by their
densities.

This force correction of the fluid velocity in the multicomponent model also comes
with a pitfall for external forces. Because the total velocity is calculated by the
density based average of the fluid velocities, the external forces on the fluids have to
also respect this averaging to correctly include the external forces. This means that
every external volume force has to be distributed to each fluid phase ~F ext

σ (~x, t) based
on the local density. For an external force ~F ext(~x, t) this can be expressed as

~F ext
σ (~x, t) =

%σ(~x, t)

%(~x, t)
~F ext(~x, t), (2.3.8)

where the total density %(~x, t) is again given by Equation (2.3.7). The correctness
of this equation can trivially be shown by plugging the definition (2.3.8) in the def-
inition of the barycentric velocity in Equation (2.3.6). The summation of the force
contribution over the component σ can be evaluated and the density prefactor of
Equation (2.3.8) exactly cancels with the summation by using the definition of the
total density (2.3.7). The resulting force correction of the barycentric velocity ~vb is
exactly the applied external force.

2.3.2. Effective Density

The effective density ψ(~x) is fundamentally a function of the density % and has to
have the units of a density which are ∆m

∆x3 where ∆m is the unit of the mass and
∆x the distance between lattice nodes. The reason to use this function is that the
potential is a pseudopotential which tries to include the immiscible nature of the
fluid components. For this purpose the density is a natural choice but the form of
the function is not obvious. Therefore there are different choices in the literature, in
this work only the two mostly used functions are introduced:

linear function

ψσ(~x) = %σ(~x) (2.3.9)

The simplest choice for the effective density function is the linear function which
is motivated by the simplicity but has the drawback that density fluctuations are
directly translated to force fluctuations that can cause stability issues especially when
dealing with large density ratios.

exponential function

ψσ(~x) = %0,σ

(
1− exp

(
−%σ(~x)

%0,σ

))
. (2.3.10)

The most common choice for the density function is the exponential function which
exponentially decays for increasing densities. The value %0,σ is a parameter of the
model for each fluid component σ. The parameter is typically chosen to be the initial
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density of the fluid component. This function is also used in this work and has the
advantage over the linear choice to allow larger densities and larger densities ratios
to be used. The reason is the saturation of the effective density for large density
towards the constant %0,σ which also causes the pseudopotential and the forces to
saturate which stabilizes the simulations. An illustration of both of the functions is
shown in Figure 2.8.

0 1 2 3 4 5 6

0

2

4

6

%0

%σ

ψ
σ

linear
exponential

Figure 2.8.: Illustration of the two introduced effective density functions showing the
saturation effect of the exponential function which can be helpful in
stabilizing the simulation.

In the literature more complex choices for the effective density ψ(~x) are used, es-
pecially if specific equations of state are desired. Most of them can be included in
the model by using a specific formula for the effective densities. The idea for the
derivation of this formula is to take the equation of state (2.3.5) and isolate the effec-
tive density function ψ(~x). From this point many equations of state can be achieved
by substituting the desired equation of state into the pressure p term. The exact
procedure is described and has been analyzed in [16].

2.3.3. Boundary Condition

As the Shan-Chen multicomponent method is a simulation of separate Lattice Boltz-
mann fluids on the same lattice which are coupled through forces almost all boundary
conditions of regular Lattice Boltzmann fluids can be applied. In theory every im-
plementation of a boundary condition should work as long as it does not rely on the
specific form of the equation of state of the original Lattice Boltzmann method in
Equation (2.2.7) because it is altered in the Shan-Chen model.
In multiphase fluid simulations a popular system is to look at droplets, especially
if the interaction of the fluids with the wall is of interest. These systems appear in
contact angle simulations where a fluid droplet is placed onto a wall which then forms
a stable configuration with a specific contact angle. This angle is often dependent
on simulation parameters and therefore can be tuned for different contact angles.
The method chosen in this work to simulate specific contact angles follows the same
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scheme as the fluid-fluid interaction in the plain Shan-Chen method [17]. To put this
into an equation it reads

~Fσ(~x) = −ψσ(~x)GσW

∑

i

s(~x+ ~ei)~ei, (2.3.11)

where s(~x) is an indicator function which is defined as

s(~x) =

{
1, ~x ∈ {wall}
0, else

. (2.3.12)

It is 1 whenever the position is defined to be a wall and 0 everywhere else. GσW

is the interaction constant which defines the interaction strength between the fluid
component σ and the wall W in the same way as the interaction Gσσ′ between two
fluid components. In this definition the sum runs over all interaction neighbors which
are conveniently chosen to be the same as for the fluid-fluid interactions of Equa-
tion (2.3.3). The interaction constants GσW define whether one fluid phase becomes
more wetting than the others, or all components behave equally if all interaction
constants GσW are equal.

Another identical interpretation of the wall interaction is that we introduce a
virtual fluid component which is only living in the cells defined as a wall. This virtual
fluid is not propagated but has a density which interacts with the fluid components
in the domain. This density is not related to the physical density and is just used
as a parameter for the simulation. In the most general case this virtual density does
not have to be uniform but in this work the spatial variation of the virtual density
was not used.

2.3.4. Phase Field

A commonly used quantity used in two-phase flow systems is the phase field χ(~x).
It is used as a continuous indicator function showing the type of fluid present at
a specific position ~x. This is especially useful in the case of the two-component
simulation because it includes the local densities of both fluid components. Naming
the fluid components A and B the phase field is defined as

χ(~x) =

%A(~x)
%A0
− %B(~x)

%B0

%A(~x)
%A0

+ %B(~x)
%B0

(2.3.13)

=
%A(~x)%B0 − %B(~x)%A0

%A(~x)%B0 + %B(~x)%A0

where the subset 0 denotes is the initial density of the fluid phase. In the case
where the two fluid phases have the same density the equation reduces to

χ(~x) =
%A(~x)− %B(~x)

%A(~x) + %B(~x)
(2.3.14)
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which is a function with the range of values between -1 and 1. A value of -1
indicates that only fluid component b is present at that position and a value of 1
the opposite. In the case of Shan-Chen two component fluids these extreme values
are not reached due to model limitations but the sign of the phase field can be used
as indication of which fluid density is more dominant at a specific position. This is
a common way of coloring the simulation domain with the specific fluid component,
since it independent on the density values used.

2.3.5. Limitations and Extensions

In the literature the Shan-Chen model is typically described as the most simple model
for multiphase flows which allows the inclusion of the model into already existing Lat-
tice Boltzmann implementations. In this section some weaknesses and extensions to
the Shan-Chen model are shown, more of them can be found in [14]. All the multi-
phase models for Lattice Boltzmann mentioned in the literature have their strengths
and weaknesses, for this model the most dominant weakness is the magnitude of the
spurious currents. Spurious currents are nonphysical, model related, fluid currents
which appear at the surface of curved fluid interfaces for which an example is shown
in Figure 2.9a.
In the case of the Shan-Chen model the reason for these spurious currents can be
tracked down to the discretization of the gradient for the pseudopotential interaction
force which was shown in Equation (2.3.4). The gradient is discretized with the
weights ωi to posses the highest degree of rotational isotropy possible and is highly
dependent on the amount of neighbors included in the interaction. For the inclusion of
the first layer of neighboring cells the order of isotropy is four [18] which is illustrated
in two dimensions as the orange points in Figure 2.10. Increasing the order of isotropy
by including more neighboring cells reduces the magnitude of the spurious currents.
An example is shown in Figure 2.10 where the next nearest neighboring points are
visualized in two dimensions which are used for the gradient discretization. The result
of this discretization is an eighth order isotropic discretization. The corresponding
weights can be found in [18] or a more general derivation in [19] and are provided in
Table 2.1.
The previously shown set-up for the spurious currents is repeated with the higher
order isotropy discretization and can be seen in Figure 2.9b. The image shows a
significant reduction of the strength of the spurious currents. It has to be noted that
this model artifact of spurious currents is not exclusive to the Shan-Chen model,
most of the models found in the literature have this artifact but it is typically less
dominant in the other models compared to the Shan-Chen model.
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(a) (b)

Figure 2.9.: Simulation snapshots showing the phase field of a droplet as the back-
ground color and the velocities as arrows. The system should be free
of any fluid movement which makes all shown velocities model artifacts
that are known as spurious currents. The magnitude of the white colored
arrows are larger than a threshold value of 10−3 ∆x

∆t and the black ones
are smaller. The identical set-up is calculated for the nearest-neighbor
interaction in (a) as well as for the next-nearest neighbor interaction in
(b). The increased number of interacting neighbors significantly reduces
the magnitude of the spurious currents in the system.

Table 2.1.: Table of weights to include multiple layers of neighboring cells for the gra-
dient discretization. The argument in the brackets denotes the squared
norm of the vector. Different orders of isotropy can be achieved by in-
cluding different numbers of neighbors.

isotropy-order ω(1) ω(2) ω(3) ω(4) ω(5) ω(6) ω(8)

4 1/3 1/12
2D 6 4/15 1/10 1/120

8 4/21 4/45 1/60 2/315 1/5040

4 1/6 1/12
3D 6 2/15 1/15 1/60 1/120

8 4/45 1/21 2/105 5/504 1/315 1/630 1/5040
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Figure 2.10.: Schematic illustration of the neighbors (orange) and next nearest neigh-
bors (blue) for a two dimensional rectangular grid. The arrows are in-
terpreted as the offsets to the central point. These neighbors are used
for the discretization of the gradients for different order of isotropy.

21



2.4. Electrokinetics

The dynamics of ions can be described on different length and time scales which follow
the same pattern as shown in Figure 2.3 ranging from the description of individual
ions to the continuum description which is done with concentration and flux fields.

2.4.1. Introduction

In this work the focus is on the continuum level description of ions, which is done
with the Nernst-Planck equation which extends the Fick’s law of diffusion [20] to
charged particles with the inclusion of electrostatic forces.

Considering a chemical species k which is dissolved in a solvent, the concentration
of these species can be described with a scalar field nk(~x, t) and the fluxes with a
vector field ~jk(~x, t). Both fields are connected by the mass conservation equation

∂tnk(~x, t) = −~∇ ·~jk(~x, t). (2.4.1)

The equation relates the change of the concentration in time to the positional change
of the fluxes, which can be thought of as the change of the concentration in a specified
volume in time is determined by the fluxes passing through the surfaces of the volume.
In the case of the ions the fluxes ~jk have two distinct contributions: the diffusive and
the advective flux.

~jk(~x, t) = ~jdif
k (~x, t) +~jadv

k (~x, t) (2.4.2)

The first contribution to the fluxes discussed is the diffusive flux. In the case of
uncharged particles, where electrostatics is negligible, this term is typically domi-
nated by the concentration gradient. For charged particles this term also includes
the electrostatic forces which are given by the well known gradient of the electrostatic
potential −~∇Φ(~x, t)

~jdif
k (~x, t) = −Dk

~∇nk(~x, t)−
Dk

kBT
qknk ~∇Φ(~x, t), (2.4.3)

where Dk is the diffusion coefficient of the species k, kBT is the thermal energy of
the system which is given by the product of the Boltzmann factor and the temperature
and qk is the charge of the ions. The derivation of this equation can be found in [21]
which finds an expression for the chemical potential and calculates the gradient of
it that results in the thermodynamic driving force given by Equation (2.4.3). This
procedure can also be expanded to include different types of forces. For this work the
qualitative picture that the diffusive flux drives the ions into their thermodynamic
equilibrium is sufficient.

The second contribution to the fluxes is the advective flux contribution, which is
the contribution of the solvent of the ions moving with velocity ~v which causes the
ions to be dragged along the direction of the solvent velocity. This can be written as

~jadv
k (~x, t) = nk(~x, t)~v(~x, t), (2.4.4)
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which is the instantaneous displacement of the ion concentration by the solvent
velocity. This description of the instantaneous displacement neglects the inertia of the
ions which is a reasonable assumption in the limit of the continuous scale because
the time scale is significantly larger than the time scale of the ballistic regime of
individual particles, which means that the inertia of the ions is negligible.

In the case when at least one chemical species k has a net charge, electrostatics
play a significant role in the system. Therefore the well known Poisson equation for
the electrostatic potential has to be solved, which can be derived from Maxwell’s
equations. The reason which allows to solve electrostatics instead of electrodynamics
is that the contribution of the dynamic effects for the electric and magnetic fields
requires ion velocities to be comparable to the speed of light to have a significant
contribution. Such velocities can not be captured by this model, which reduces the
computational effort for solving the electrostatic potential Φ(~x, t) significantly.

~∇ ·
(
ε(~x, t)~∇Φ(~x, t)

)
= −q(~x, t)

ε0
(2.4.5)

In the most general form the Poisson equation allows for a spatial varying dielectric
permittivity ε(~x, t), which increases the complexity of solving this equation, ε0 is the
vacuum permittivity and the q(~x, t) is the charge present at the location ~x at the
time t, which is given by the sum of all individual ions present

q(~x, t) =
∑

k

qknk(~x, t). (2.4.6)

The more common form of the Poisson equation includes the assumption of a spatial
invariant dielectric permittivity ε which simplifies the equation to

∆Φ(~x, t) = −q(~x, t)
εε0

. (2.4.7)

2.4.2. Limitations

This continuum level description of the ions takes significantly less effort for the
computation than solving the equations of motion for each ion individually due to
the reduced number of equations which have to be solved but this reduced complexity
comes at the cost of assumptions which have to be made. In the following the most
important assumptions of the model are mentioned.

First of all the ion model assumes non-interacting ions which means excluded
volume effects are neglected. This restricts the possible ion concentration to moderate
ones. Furthermore this also restricts the valency to monovalent ions. The reason for
this is that with large ion concentrations or higher valency ions correlation effects
play a significant role and layering of ions occurs, which will not happen in this
mean-field model.

Another limitation is the constant diffusion coefficient Dk and the constant tem-
perature T in the system. The model assumes a constant diffusion coefficient for
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the whole domain, which restricts the application of the model and excludes systems
with varying diffusion coefficients e.g. multicomponent fluid systems of components
with different viscosities.

2.4.3. Lattice Electrokinetics

In the previous Section 2.4.1 the continuous mathematical description of the ion
dynamics known as the Nernst-Planck equation was presented. In this section the
discretization of the continuous equation will be discussed, which will be shown for
the specific electrokinetics equations. The discretization of the ions is chosen to live
on the same grid as the fluids discussed in Section 2.2.

The mass conservation Equation (2.4.1) is discretized using the Finite Volume Dis-
cretization technique. In this case this it is superior to other discretization methods
like the Finite Elements Discretization Method because it respects conservation laws
by construction. With this approach each point on the discretization grid is assigned
a volume and the equation, which is supposed to be discretized, is integrated over
this volume. The divergence terms are then converted to surface integrals with the
help of Gauss’ divergence theorem. In the case of the ion dynamics this results in
the equation

∂t

∫

V
nk(~x, t)dV = −

∫

V

~∇ ·~jk(~x, t)dV

= −
∫

∂V

~jk(~x, t) · ~ndA, (2.4.8)

where ~n is the normal vector of the surfaces, V is the volume to be integrated over,
∂V denotes the surface of the volume V and dA is the infinitesimal area element of
the surfaces. With this transformation the fluxes ~jk now have to be evaluated at
the surfaces of the volumes. The right hand side of the equation can typically be
calculated analytically, which is especially trivial for a cubic volume which is used in
this work. To use this equation it has to be discretized also in time which is done
with a discrete time step ∆t and a simple finite difference expansion of the partial
time derivative. The integrated concentration, the number of particles within the
volume element, is defined as Nk(~x, t) =

∫
V nk(~x, t)dV

Nk(~x, t+ ∆t)−Nk(~x, t)

∆t
= −

∑

i

Ai~ei ·~jk(~x+
~ei
2
, t) (2.4.9)

where Ai is the area associated to one flux and depends on the amount of fluxes
used for the discretization. In the case the number of fluxes per cell corresponds to the
number of dimensions this is simply the surface area of the grid cell, for the remaining
cases these areas are chosen to recover the correct diffusion coefficient Dk when
calculating the mean-squared displacement of the concentration [22]. The vectors
~ei are the lattice vectors to the neighboring cells which also denote the direction of
the flux vectors associated with the index i. The number of lattice vectors used for
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the discretization is again a trade-of between accuracy and computational cost which
was already discussed for a similar problem in Section 2.2.

One crucial assumption for this model is that the particles are distributed ho-
mogeneously within the volume element. This assumption is necessary to allow for
the discretization of the fluxes on the surfaces. Furthermore this allows to calcu-
late the number of particles within a volume element by a simple multiplication
Nk(~x, t) = nk(~x, t)∆x

3. Substituting this into the discretization in Equation (2.4.9)
results in the expression

nk(~x, t+ ∆t) = nk(~x, t)−
∆t

∆x3

∑

i

Ai~ei ·~jk(~x+
~ei
2
, t). (2.4.10)

In Equation (2.4.8) the evaluation of the fluxes on the surfaces of the volumes are
introduced which show up in the discretized equation (2.4.9) and (2.4.10) by the
positional half shift ~ei

2 by the lattice vectors which is also known as the staggered
access to a grid. These shifts are illustrated in Figure 2.11 for a two dimensional
square grid where the black dots are the centers of the cells which are the positions
the density is defined at and the red crosses are the positions of the fluxes on the
surfaces.

(0, 0)(−1, 0) (1, 0)

(0,−1)

(0, 1)

(0,− 1
2 )

(0, 12 )

(− 1
2 , 0) ( 1

2 , 0)

Figure 2.11.: Two dimensional square grid where the density fields are defined at the
center of the cells which are shown as black dots. The red crosses are
showing the shifted positions on the surfaces of the cells for the fluxes
according to the finite volume discretization scheme.

The fluxes on the surfaces are typically not trivially accessible because the densities
are only known at center of the cells which enforces the use an interpolation scheme.
In this work the interpolation of the scalar fields and the discretization of the gradi-
ents on the surfaces is done with a finite difference approach where the hat denotes
the normalized vector.
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n(~x+
~ei
2

) =
n(~x+ ~ei) + n(~x)

2
(2.4.11)

(~∇n)(~x+
~ei
2

) =
n(~x+ ~ei)− n(~x)

|~ei|
~̂ei (2.4.12)

These transformations are applied to the diffusive flux equation (2.4.3) for all gradi-
ents and the interpolation for the density field n.

~jdif
k (~x, t) = −Dk

~∇nk(~x, t)−
Dk

kBT
qk(~x, t)nk(~x, t)~∇Φ(~x, t)

The transformed equation therefore reads

~jdif
k (~x+

~ei
2
, t) =Dk

nk(~x+ ~ei, t)− nk(~x, t)
|~ei|

~̂ei

+
Dk

kBT
qk
nk(~x+ ~ei, t) + nk(~x, t)

2

Φ(~x+ ~ei, t)− Φ(~x, t)

|~ei|
~̂ei. (2.4.13)

The discretization of the advective flux shown in Equation (2.4.4) is done with a
method called Volume of Fluid [23]. In this method the volume element is virtually
displaced by the velocity vector ~v as it is shown in Figure 2.12.

~v

(1− vx) vy

vx (1− vy)

vxvy

Figure 2.12.: Schematic illustration of the volume of fluid discretization in two dimen-
sions which is used for the discretization of the advection. The volume
cell is displaced by the velocity vector ~v. The overlapping areas, shown
with diagonal color stripes, to neighboring volume cells are added to
the corresponding fluxes.

Because of the virtual displacement the volume element overlaps with neighboring
volumes. The fluxes pointing to the volume elements which have an overlapping
volume are extended by an additional contribution given by the product of the local
species concentration nk and the overlapping volume. Using the definitions
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vx(~x) := ~v(~x) · ~ex
∆t

∆x
vy(~x) := ~v(~x) · ~ey

∆t

∆x
(2.4.14)

the corresponding mathematical expressions for the two dimensional case are given
by

~jadv
k (~x± ~ex

2
) = nk(~x)vx(~x) (1− vy(~x)) ~̂ex

∆x

∆t

{
1 vx(~x) ≷ 0

0 else

~jadv
k (~x± ~ey

2
) = nk(~x)vy(~x) (1− vx(~x)) ~̂ey

∆x

∆t

{
1 vy(~x) ≷ 0

0 else

~jadv
k (~x+

~ex
2
± ~ey

2
) = nk(~x) |vx(~x)vy(~x)| ~̂ex ± ~̂ey√

2

∆x

∆t

{
1 vx(~x) > 0 ∧ vy(~x) ≷ 0

0 else

~jadv
k (~x− ~ex

2
± ~ey

2
) = nk(~x) |vx(~x)vy(~x)| −~̂ex ± ~̂ey√

2

∆x

∆t

{
1 vx(~x) < 0 ∧ vy(~x) ≷ 0

0 else
.

(2.4.15)

The extension towards three dimensions can easily be done with some writing effort
due to the additional factors according to the overlaps in the z-direction.

The discretization approach taken has the benefit compared to the finite element
discretization that it is mass and momentum conserving by construction. The reason
for this is that the flux leaving one volume element is the incoming flux to an adjacent
volume element, which insures that no mass can be lost. The downside is that the
fluxes ~jk have to be known on the surfaces of the volume elements for which it is
typically necessary to use an interpolation scheme.

2.4.4. Boundary Conditions

For the lattice electrokinetics based algorithm two boundary conditions for the den-
sity and one for the flux are used. The periodic boundary condition was already
described in Section 2.2.4 and is the most used boundary condition in this work.
Another boundary condition is the constant density boundary condition which can
trivially be implemented by forcing the density of a specific cell ~x0 to a specific value
N0 ∈ R in each iteration

nk(~x0) = N0. (2.4.16)

For the flux the only boundary condition necessary is the No-Flux boundary condition
which is used whenever a cell is not allowed to have fluxes leaving or entering the cell.
This boundary condition is especially useful when there is a wall inside the domain
where no particle densities are allowed to enter the cell. In the discretization this
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can be achieved by forcing a specific flux pointing into and out of the cell value to
vanish. Assuming ~x0 is the boundary cell in the domain this can be written as

~jk(~x0 ±
~ei
2

) = ~0. (2.4.17)

2.4.5. Electrostatic Solver

In Section 2.4 the ion dynamics has been introduced where also the charged nature of
the ions has been mentioned and the contribution of the gradient of the electrostatic
potential to the diffusive flux of the ions has been discussed. The respective Poisson
equation for the electrostatic potential was shown in Equation (2.4.5), in this section
the focus is on how the discretization of this equation is done and what techniques
for solving are used. For simplicity the time dependency of the electrostatic potential
is not expressed explicitly.

The discretization of the Poisson equation is done on the same cubic grid as with
all the previous models, the gradients are discretized with the well known central
finite difference scheme with the direct neighbors which corresponds to a second
order Taylor expansion. The discretization of the derivatives for a scalar field n(x)
with equidistant points ∆x apart reads

∂xn(x) ≈ n(x+ ∆x)− n(x−∆x)

2∆x

∂2
xn(x) ≈ n(x+ ∆x) + n(x−∆x)− 2n(x)

∆x2
. (2.4.18)

The continuous equation for spatial invariant dielectric permittivity reads

∆Φ(~x) = −q(~x)

εε0
(2.4.19)

which is discretized using the notation ~ei to indicate the vector pointing to the
next neighbor in the i-direction. The equation then reads

∑

~ei∈{~ex,~ey ,~ez}

2Φ(~x)− Φ(~x+ ~ei)− Φ(~x− ~ei)
|~ei|2

=
q(~x)

εε0
. (2.4.20)

Fourier Transformation based Poisson Solver

The first technique for solving the discretized Poisson equation is based on the Fast
Fourier Transformation (FFT). The discretized equation is transformed to the Fourier
space where shifts in real space are transformed to a multiplication with an expo-
nential factor in Fourier space.

F {n(x)} = n̂(k)

F {n(x+ ei)} = e−ieikn̂(k) (2.4.21)
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This relation can be used to solve the discretized version of the Poisson equation
(2.4.20) with the spatial invariant permittivity directly in Fourier space. The exact
derivation of the necessary Greens function in Fourier space for a cubic lattice can
be found in [21]. The function evaluations of Φ(~x+~ei) results in pairs of exponential
factors in Fourier space, which can be combined using the exponential definition of
the cosine function

cos(x) =
eix + e−ix

2
. (2.4.22)

From the discrete Fourier transformation it is known that the basis in Fourier space
is orthogonal which means that the Fourier transformed discretized relation (2.4.20)
has to be true not just for the total sum but for each term on its own, which can be
written as

Φ̂(~k) =
−q̂(~k)

2εε0

(
cos(2πkx

Nx
) + cos(

2πky
Ny

) + cos(2πkz
Nz

)− 3
)

Φ̂(~0) = 0

. (2.4.23)

The vanishing electrostatic potential at ~k = ~0 enforces charge neutrality in the sys-
tem which is necessary because otherwise the electrostatic potential would diverge
because of the periodic boundary conditions. Excluding the Fourier transformed
charge density from Equation (2.4.23) the remaining factor is a constant which only
depends on the systems dimensions and therefore can be precomputed and reused
for every iteration. The overall algorithm therefore only involves the Fourier trans-
formation of the charges, a simple pointwise multiplication, and the inverse Fourier
transformation. In total this produces a scaling of O (N(2 log(N) + 1)) for the com-
putation, where N is the number of lattice cells.

Successive Over-Relaxation based Poisson Solver

The second technique used in this work is the successive over-relaxation method [24],
which is an iterative scheme for solving linear systems of equations, and is closely
related to the Gauss-Seidel method. The description of the method is again done with
the discretized Poisson equation (2.4.19). The idea is to start with an initial guess
for the solution and iteratively update the guess towards a solution of the problem.
In the case of the Poisson equation one can define a residual of the discretization
(2.4.20) which reads for a cubic grid with side length ∆x

Ri(~x) = −Φi(~x)+
1

6


 ∑

~ei∈{~ex,~ey ,~ez}
Φi(~x+ ~ei, t) + Φi(~x− ~ei, t) +

q(~x)∆x2

εε0


 . (2.4.24)

With the residual definition the initial guess of the electrostatic potential is iteratively
updated with the calculated residual which is weighted using the factor ω ∈ (0, 2).
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This additional weighting typically allows for a faster convergence when choosing
values ω > 1 or a slower convergence for ω < 1 to prevent stability issues in the
simulation. Typical values used in this work are ω ≈ 1.9 for a fast convergence. The
equation reads

Φi+1(~x) = Φi(~x) + ωRi(~x) (2.4.25)

= Φi(~x) (1− ω) +
ω

6


 ∑

~ei∈{~ex,~ey ,~ez}
Φi(~x+ ~ei) + Φi(~x− ~ei) +

q(~x)∆x2

εε0


 .

(2.4.26)

where the superscript i denotes the iteration and for the starting point the last
calculated electrostatic potential Φ0(~x) = Φ(~x, t − ∆t) is used. The potential is
updated using a red/black coloring of the domain which is shown in Figure 2.13.

Figure 2.13.: Red and black coloring of the domain cells which are used as indicators
for the iterations in the SOR method for solving the electrostatic Pois-
son equation.

This approach can be taken because the calculation of the residual (2.4.24) only
includes the value for the electrostatic potential of the direct neighbors, which is
shown with the arrows which are all pointing from each black cell to only red cells
and vice versa. Therefore it is possible to update all the black colored nodes in
parallel. For the red cells the already updated potential from the black colored nodes
can be used which can again be done in parallel. Therefore when starting with a
black iteration the following red iteration can use the already updated values from
the black iteration which accelerates the convergence of the algorithm. Due to the
iterative nature of the algorithm a convergence criterion has to be used. Different
convergence criteria are possible, in this work the absolute sum of all residuals has
to be below some threshold value which can be written as

∑

~x

∣∣Ri(~x)
∣∣ < max error. (2.4.27)

The iterative approach has the possibility to include all kinds of different bound-
ary conditions to the algorithm with relatively small effort. Most of the boundary
conditions have to be enforced with every iteration of the algorithm, for example a
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Dirichlet boundary condition which forces the electrostatic potential Φ to a specific
value. This can be done at any specific point on the grid by fixing the value of the
desired cell to a specific value which was not possible with the previously discussed
Fourier transformation based method in Section 2.4.5. This flexibility comes with
a diminished scaling of the computation time of O(N

3
2 ) compared to the Fourier

transformation method. For this the reason the Fourier transformation method is
used whenever possible.

Non-uniform dielectric permittivity

The Poisson equation (2.4.19) is only valid for a spatially uniform dielectric permit-
tivity, which is not necessarily the case in the context of multicomponent fluids where
different fluid components can have a different dielectric permittivity which can be
expressed as a spatially varying dielectric permittivity ε(~x). The corresponding Pois-
son equation reads

~∇ ·
(
ε(~x)~∇Φ(~x)

)
= −q(~x)

ε0

∆Φ(~x) = − q(~x)

ε(~x)ε0
−
~∇ε(~x) · ~∇Φ(~x)

ε(~x)
. (2.4.28)

This more complex equation can not be solved trivially using the described methods
which is why the additional term on the right hand side is treated as a polarization
charge and solved iteratively by using the calculated electrostatic potential from the
last iteration [25]. In this way the previously discussed solvers can be reused but have
to solve the equation multiple times for a single timestep. The additional term is
discretized as described previously by using the second order central finite differences
scheme which results in

~∇ε(~x) · ~∇Φ(~x)

ε(~x)
≈

∑

~ei∈{~ex,~ey ,~ez}

(ε(~x+ ~ei)− ε(~x− ~ei)) (Φ(~x+ ~ei)− Φ(~x− ~ei))
4ε(~x)∆x2

.

(2.4.29)

The iterative update of the polarization charge is stopped with the same criteria as
described in equation (2.4.27). This approach for solving the generalized Poisson
equation is similar to approaches taken in Molecular Dynamics simulations [26] and
allows the reuse of previous implementations of regular Poisson solvers. The downside
of the approach is the computational cost of the repeated solving of the regular
Poisson equation which is the most costly operation in the context of this work
anyways.
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2.5. Couplings between Fluid and Ions

The models for the fluid (Section 2.2.2) and the ions (Section 2.4.3) are both dis-
cretized on the very same cubic grid. The discretization is performed on the same
grid to reduce the interpolations necessary if couplings are introduced between the
methods which are discussed in this section.

Advective Coupling

The first coupling was implicitly mentioned in Section 2.4.3 when discussing the
discretization of the advection term for the ions. In this discretization the volume
cell is virtually displaced by the distance the fluid would move in a single timestep
given by the product of the velocity vector ~v and the timestep ∆t. The resulting
overlapping volumes to the neighboring cells determines the fluxes to the respective
volumes. This velocity vector is calculated for each volume cell individually by solving
the Navier-Stokes Equation using the Lattice Boltzmann Method. This describes the
first coupling between the methods because of the advection.

Friction Coupling

The second coupling between the ions and the fluid and is induced by the ion move-
ment. The movement of the ions, which are expressed as fluxes, drags along the
fluid they are solvated in due to the friction between the solute and the solvent.
The friction applies only for velocity differences between the solute and the solvent
and causes the velocities between the two to become the same. In Equation (2.4.2)
the two contributions to the ion fluxes are shown where the advective contribution
consists of ions moving with the solvent velocity. The advective flux therefore does
not contribute to the friction coupling and only the diffusive flux couples to the fluid,
which reads

~f(~x) = γ
(
~jions(~x)− %ions~vfluid(~x)

)

= γ~jdif
ions(~x), (2.5.1)

where the friction coefficient is defined as γ = kBT
D , ~vfluid is the fluid velocity and

~jions is the ion flux. In the case where multiple ion species are present it is possible
that the individual ion species k have different rates of diffusion Dk and therefore
different friction coupling constants. The friction coupling force density in this case
can be expressed as

~f(~x) = kBT
∑

k

~jdif
k (~x)

Dk
. (2.5.2)

In Section 2.4.3 the discretization of the fluxes on the surface of the volume elements
is discussed. Since the friction coupling forces have to be known in the center of
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the volume elements there are multiple approaches which can be taken. The first
approach, which is also the more correct one, is to discretize the friction coupling
force on the center of the volume element. This approach calculates the diffusive
ion fluxes once for the surfaces and once for the center of the volume elements. The
second approach is to interpolate the already evaluated fluxes from the surfaces back
onto the center. The equation for this interpolation reads

~f(~x) = kBT
∑

k

∑

i

~jdif
k (~x+ ~ei

2 ) +~jdif
k (~x− ~ei

2 )

2Dk
. (2.5.3)

This approach is less accurate but computationally more efficient because the calcu-
lated diffusive fluxes can be reused. This is the default discretization in this work
except when explicitly stated differently.

Multicomponent Coupling

All mentioned couplings deal with the single-component nature of the solvent fluid. In
Section 2.3 a multicomponent fluid model was discussed which offers more coupling
possibilities to the system. In particular one focus is on the chemical nature of
the different fluid components which can be interpreted as different excess chemical
potentials which are present in the fluid components. For the case of two fluid
components there are two different excess chemical potentials µex

a,b present. The
inclusion of the chemical potentials into the fluid model and the model for the I ion
species can be done with forces. The respective equation is the Gibbs-Duhem relation
which reads

0 = SdT − V dp+

I∑

k=1

Nkdµk. (2.5.4)

With the assumption of an isothermal system (dT = 0) Equation (2.5.4) can be
simplified and reads

~f(~x) = −~∇p(~x) = −
∑

k

Nk

V
~∇µk(~x) (2.5.5)

~fk(~x) = −nk ~∇µk(~x), (2.5.6)

which links the pressure gradient to the gradient of the chemical potential and
the number density of the different species k. In the context of the previously men-
tioned models the chemical potential µk has not been included and is therefore not
known. Furthermore it is not clear on how the chemical potential should change in
the transition region between the fluid components.

In this work the only change in the chemical potential between the fluid components
is due to the change in the solvation energy. The difference of the chemical potentials
between two fluid components A and B can be written as
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∆µk = µsolv
k (fluid A)− µsolv

k (fluid B), (2.5.7)

which is called Gibbs transfer energy in the literature and describes the change
in free energy when moving a particle of species k from fluid A to fluid B. This
value is an input parameter to the models and the solvation chemical potential µsolv

k

is approximated. Fundamentally the solvation chemical potential is given by the
chemical nature of the solvent which part of it are the hydrogen bonds formed with
the solvated particle species. In the mesoscopic simulation scale this length scale can
not be resolved, an approximative approach is taken which describes the solvation
chemical potential using the fluid density as described in [27]. The equation for a
linear dependency on the fluid density of only one of the two fluid components reads

µsolv
k =

∆µk
∆%A

fluid

%A
fluid, (2.5.8)

where ∆µk is an input parameter and ∆%A
fluid is the maximum density difference

of the density of fluid component A. The resulting force is given by plugging the
definition of the solvation chemical potential (2.5.8) into the simplified Gibbs-Duhem
relation (2.5.6) which results in

~fk(~x) = −nk(~x)
∆µk

∆%A
fluid

~∇%A
fluid(~x). (2.5.9)

This additional force density is included as an additional contribution to the diffusive
flux which was defined in Equation (2.4.3). The inclusion is done in the same manner
as with the electrostatic force −qknk ~∇Φ. The resulting addition to the diffusive flux
reads

~jsolv
k (~x, t) = − Dk

kBT
nk(~x, t)

∆µk
∆%A

fluid

~∇%A
fluid(~x, t) (2.5.10)

and is added to the already discussed diffusive flux from Equation (2.4.3) and is
therefore also part of the friction coupling in Equation (2.5.2). For the momentum
to be conserved in the system the force density also needs a counter-force which in
this case acts on the fluid. This can be done by switching the role of the fluid density
%A

fluid and the number density nk in Equation (2.5.9) and exerting it on the fluid. The
resulting force density reads

~fA(~x, t) = −%A
fluid(~x, t)

∑

k

∆µk
∆%A

fluid

~∇nk(~x, t). (2.5.11)

The diffusive flux contribution for the ion species k is discretized in the same way as
the other contributions to the diffusive flux, which apply the equations (2.4.11) and
(2.4.12). Therefore the resulting discretized flux reads
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~jsolv
k (~x+

~ei
2
, t) = − Dk

kBT

∆µk
∆%A

fluid

nk(~x+ ~ei, t) + nk(~x, t)

2

%A
fluid(~x+ ~ei, t)− %A

fluid(~x, t)

|~ei|
.

(2.5.12)

For the force on the fluid the equation is discretized in the same way as the Shan-
Chen interaction force is calculated, which is described in Section 2.3.1. The reason
this discretization works comes from the observation in Equation (2.3.4) which shows
the continuous equation of the Shan-Chen interaction which is of the same structure
as Equation (2.5.9). The discretization for this term reads

~fA(~x, t) = −%A
fluid(~x, t)

∑

k

∆µk
∆%A

fluid∆t2

∑

i

ωink(~x+ ~ei, t)~ei. (2.5.13)

The model of the solvation chemical potential in Equation (2.5.8) based on the fluid
density has two disadvantages. First of all it requires the knowledge of the density
differences of the fluid ∆%A

fluid and it is only dependent on the density of one fluid
component and therefore neglects the other fluid component. Furthermore this for-
mulation also suffers from the density fluctuations due to pressure variations because
of the ideal gas contribution in the equation of state (2.2.7) of the Lattice Boltzmann
Method. An alternative formulation for this model is using the previously introduced
phase field χ in Equation (2.3.13). This quantity typically is less influenced from den-
sity fluctuations and can simply replace the density formulation in Equation (2.5.8)
which reads

µsolv
k =

∆µk
2

χ(~x), (2.5.14)

where the factor 1
2 comes from the range of values of the phase field. It includes

both fluid densities and does not require the knowledge of the fluid densities values
inside the fluid phases when using fluid components with equal bulk densities. The
discretization of the forces is analogue to the ones described above by replacing the
fluid density with the phase field and ∆%A

fluid with the factor 1
2 .

2.6. Summary of Models

In the previous sections the models for the multicomponent fluids as solvents as well
as the ions as solutes have been discussed together with the changes to the original
models. In this section a summary of the models is provided for a quick overview.
In all equations the time dependency of the quantities is omitted.

Shan-Chen Multicomponent Fluids

The multicomponent fluids are simulated using the Shan-Chen multicomponent model.
The necessary Lattice Boltzmann fluids are simulated on a cubic lattice using the
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BGK collision operator. The forces on the fluids include the Shan-Chen interac-
tion forces, the friction coupling due to the solute movement as well as the forces
stemming from the differences in the chemical potentials given by the Gibbs transfer
energy. The continuous formulation of the forces reads

~fσ(~x) =− ψσ(~x)
∑

σ′

Gσσ′c
2
s
~∇ψσ′(~x)− δσA%

A
fluid(~x)

∑

k

∆µk
∆%A

fluid

~∇nk(~x)

− %σ
%

(
kBT

∑

k

~∇nk(~x) +
∑

k

qknk(~x)~∇Φ(~x) +
∑

k

∆µk
∆%A

fluid

nk(~x)~∇%A
fluid(~x)

)

(2.6.1)
which is discretized on the grid with the back-interpolation of the friction coupling

described in Equation (2.5.3)

~fσ(~x) =− ψσ(~x)
∑

σ′

Gσσ′c
2
s

∑

i

ωiψσ′(~x+ ~ei)~ei

+
%σkBT

%

∑

k

∑

i

~jdif
k (~x+ ~ei

2 ) +~jdif
k (~x− ~ei

2 )

2Dk

− %A
fluid(~x)

∑

k

∆µk
∆%A

fluid∆t2

∑

i

ωink(~x+ ~ei)~ei

(2.6.2)

Lattice Electrokinetics

The dynamics of the ion distributions given by the Nernst-Planck equation are prop-
agated using a finite volume discretization method. The ion fluxes have a diffusive
and an advective contribution. The diffusive flux includes the concentration gradient,
the coupling to the electrostatic potential as well as the contribution from the chemi-
cal potential formulated with the Gibbs transfer energy. The continuous formulation
reads

~jdif
k (~x) = −Dk

~∇nk(~x)− Dk

kBT
qknk(~x)~∇Φ(~x)− Dk

kBT
nk(~x)

∆µk
∆%A

fluid

~∇%A
fluid(~x) (2.6.3)

which is discretized on the surfaces of the volume elements according to the finite
volume discretization

~jdif
k (~x+

~ei
2

) =Dk
nk(~x+ ~ei)− nk(~x)

|~ei|
~̂ei

+
Dk

kBT
qk
nk(~x+ ~ei) + nk(~x)

2

Φ(~x+ ~ei)− Φ(~x)

|~ei|
~̂ei

+
Dk∆µk

kBT∆%A
fluid

nk(~x+ ~ei) + nk(x)

2

%A
fluid(~x+ ~ei)− %A

fluid(~x)

|~ei|
~̂ei.

(2.6.4)
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The advective flux is discretized using the volume of fluid method as an additional
contribution to the fluxes and reads

~jadv
k (~x) = nk(~x)~v(~x), (2.6.5)

with the discretization given in Equation (2.4.15).
The Poisson equation for the electrostatic potential reads in the most general form

~∇ ·
(
ε(~x, t)~∇Φ(~x, t)

)
= −q(~x, t)

ε0
(2.6.6)

which includes a spatial dependent permittivity. In the case of spatially indepen-
dent permittivity the equation reduces to

∆Φ(~x) = −q(~x)

εε0
, (2.6.7)

which is solved based on the fast Fourier transformation (Section 2.4.5) for fully
periodic systems or the successive overrelaxation method (Section 2.4.5) if more com-
plex boundary conditions are required.
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3. Implementation

Grid based algorithms like the Lattice Boltzmann Method are prime examples where
highly optimized and parallelized code can make a huge difference in the computation
time of the algorithms. In the scientific programming community the requirements
for production code has evolved in the past decade. The focus for implementations
has shifted from purely performant code towards higher quality code which includes
readability, testability and maintainability. The reason for this shift is the overall
increase in performance of the hardware which allows to write less optimized code
without loosing all of the performance but allow others to read and understand the
implementations.

In this work the implementation of the grid based algorithms is done using a python
module named pystencils [3]. It is capable of generating highly optimized C++ or
Cuda code from symbolic math expressions which can be used for image processing
as well as for numerical simulations which are performed on a grid. Using the code
generation feature one can write the expressions in an abstract mathematical way
which allows for good readability and maintainability of the code.

pystencils

The pystencils module itself extends the well known sympy symbolic math library
[28] by stencil operations which are performed on each grid cell. These operations
typically include the values of neighboring grid cells which are expressed as offsets
to the current cell. Internally each access to an array is represented by a symbol.
This representation allows to use the sympy symbolic math optimizations which are
capable of grouping common sub-expressions and reducing the overall amount of op-
erations necessary for the evaluation. This symbolic-math grouping is one ingredient
for highly-performant code which can directly be translated to lower level program-
ming languages like C++ or Cuda which is the process referred to as code generation.
The code can be extracted and used together with waLBerla [29] or used with the
build-in array handlers. The first one is a high-performance simulation framework
written in C++ that is designed for block-structured multiphysics simulations. It is
focused on highly parallelized Lattice Boltzmann implementations including regular
parallelization with MPI or hybrid-parallelization with MPI+OpenMP. The latter
mentioned build-in array handler provides a just-in-time compilation of the code
as well as the organization of the arrays which allow for calculations performed on
the CPU using numpy [30] arrays as well as calculations on GPUs with pyCUDA
or openCL. The array-handling also includes a functionality which allows to impose
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Listing 3.1: Example code for the code generation of a simple diffusion term using
the finite-volume discretization.

f l u x e x p r e s s i o n = − d i f f u s i o n c o e f f i c i e n t ∗ sympy . Matrix (
[ p y s t e n c i l s . fd . d i f f ( d e n s i t y f i e l d , i )

for i in range ( d e n s i t y f i e l d . s p a t i a l d i m e n s i o n s ) ] )

fvm = p y s t e n c i l s . fd . FVM1stOrder ( d e n s i t y f i e l d ,
f l u x=expr e s s i on )

f l u x c a l c = fvm . d i s c r e t e f l u x ( f l u x f i e l d )
dens i ty update = fvm . d i s c r e t e c o n t i n u i t y ( f l u x f i e l d )

f l u x k e r n e l = p y s t e n c i l s . c r e a t e s t a g g e r e d k e r n e l ( f l u x c a l c ) . compile ( )
d e n s i t y k e r n e l = p y s t e n c i l s . c r e a t e k e r n e l ( dens i ty update ) . compile ( )

boundary conditions to the arrays and can therefore be used as a framework to solve
differential equations which are discretized on grids.

The representation of stencil operations with the symbols using sympy also has
the advantage that derivatives can directly be expressed using sympy built-in tools.
These derivatives can then easily be replaced with finite difference derivative expres-
sions which is done with an automatic discretization tool build into pystencils. This
tool is also able to discretize equations with the finite-volume discretization based
on staggered accesses to fields. An example on how this discretization looks like
for a simple diffusion term using the finite-volume discretization is shown in List-
ing 3.1. The calculation of the fluxes and the following density update is done with
two separate kernels.

lbmpy

The pystencils module is primarily designed to generate code which is focused on
finite difference and finite volume discretizations. The code for the Lattice Boltz-
mann Method is slightly more complex which is why we there is an extension-module
to pystencils in development named lbmpy [4] that is designed to generate Lattice
Boltzmann kernels for all different kind of flavors possible. This includes different
dimensionality, velocity sets, collision models and force models. It uses the pysten-
cils framework to generate highly optimized streaming and collision kernels for the
respective set of chosen options which can also include the output of macroscopic
quantities. An example on how to generate the collision and streaming kernels is
shown in Listing 3.2.
This extension is also capable of using sympy to perform the Chapman-Enskog expan-
sion on the specific Lattice Boltzmann model. At the point of writing this expansion
does not respect forces which are added to the Lattice Boltzmann models, which are
for example present in the Shan-Chen model.
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Listing 3.2: Example code for the code generation of simple collision and streaming
kernels.

c o l l i s i o n o p e r a t i o n = c r e a t e l b u p d a t e r u l e (
method=” s r t ” ,
s t e n c i l=g e t s t e n c i l ( ”D2Q9” ) ,
r e l a x a t i o n r a t e s =(1 .0 , ) ,
compre s s ib l e=True ,
f o r ce mode l=”guo” ,
f o r c e=f o r c e f i e l d ,
k e r n e l t y p e=” c o l l i d e o n l y ” )

c o l l i s i o n k e r n e l = p y s t e n c i l s . c r e a t e k e r n e l ( c o l l i s i o n o p e r a t i o n ) . compile ( )

s t r eam operat i on = c r e a t e s t r e a m p u l l w i t h o u t p u t k e r n e l (
lb method=c o l l i s i o n o p e r a t i o n . method ,
s r c f i e l d=p o p u l a t i o n s f i e l d s r c ,
d s t f i e l d=p o p u l a t i o n s f i e l d d s t ,
output={

” dens i ty ” : d e n s i t y f i e l d ,
” v e l o c i t y ” : v e l o c i t y f i e l d

})

s t r eam kerne l = p y s t e n c i l s . c r e a t e k e r n e l ( s t r eam operat i on ) . compile ( )

3.1. Model Implementations

The remaining part of this chapter deals with implementation details. The imple-
mentation of the models is done in a python module which offers the discretization
using the pystencils and lbmpy modules for the code generation. This way all com-
putations in this work are performed with the highly optimized code generated by
these modules. The implementations of the individual models are independent of
the couplings between them. The couplings are introduced with forces which are
evaluated in a prescribed order which is given by a time-loop functionality.

3.1.1. Lattice Boltzmann Implementation

The kernels for the LB implementation are generated using the lbmpy built-in dis-
cretization functions. In this work the Guo-forcing scheme to include forces together
with the BGK collision operator as described in Section 2.2 is used. This choice is
not fixed and can be swapped without additional effort. The discretization functions
generate kernels for the collision operator as well as for the streaming operator which
in this case also include the calculation and output of macroscopic quantities like
the density and the velocity. These calculated quantities are reused in the collision
operator as well as the forces which are included with an additional field. The reason
for using a field for the forces is that the forces can depend on the fluid densities
as it is the case in the Shan-Chen model which is a problem if the density is not
double-buffered and directly calculated in the streaming kernel. With the specific
mentioned set-up the velocity correction with the force uses already updated fluid
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densities which causes a violation to the momentum conservation. Storing the forces
in a field also has the benefit that the calculated forces can be reused in the velocity
calculation. The collision and streaming operators are called consecutively with the
boundary handling functions between the calls, a schematic representation of the
timeloop is shown in Figure 3.1.

collision
operator

boundary
handling:

population

stream
operator

boundary
handling:
density

force field

density field

velocity field

Figure 3.1.: Sketch of the used calling-order of the kernels in the Lattice Boltzmann
implementation.

3.1.2. Shan-Chen Implementation

The more interesting implementation is the Shan-Chen multi-component model for
which two separate LB fluids are used which each have separate fields including the
force fields. These force fields are populated using a force calculation kernel which
calculates the Shan-Chen-interaction between the fluids using the density fields which
are the output of the streaming kernels. This kernel can also include other force ex-
pressions. The collision kernels of the two LB fluids are reused and merged to a
single kernel with a modified velocity input according to Equation (2.3.6). The two
streaming kernels are also merged to a single kernel and the output of the barycen-
tric velocity according to Equation (2.3.6) is added. Optionally the calculation of
the phase field can also be included in the streaming kernel for which a boundary
handling is also available. The timeloop for this implementation is shown in Fig-
ure 3.2. It starts with the calculation of the forces using the force kernel which uses
the density fields as input and writes the results to a force field. These forces are then
used together with the barycentric equilibrium velocity and the densities in the col-
lision operator which operates on both fluid components. Afterwards the boundary
handling for the populations is executed which is followed by the streaming operators
which reuse the forces in the force fields for the velocity correction and output the
macroscopic velocity field as well as the fluid densities and optionally other fields.
The execution cycle finishes with the boundary handling for the densities and the
velocities.
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Figure 3.2.: Sketch of the used calling-order of the kernels in the Shan-Chen imple-
mentation.

3.1.3. Lattice Electrokinetics Implementation

For the discretization of the Nernst-Planck equation the automatic finite-volume dis-
cretization of pystencils is used. For that only the number of discrete fluxes used
and the symbolic expression for the diffusive flux has to be provided using sympy
symbols. The symbols corresponding to field accesses are automatically interpolated
on the surfaces and the generated kernel stores the fluxes in a staggered field. The
second generated kernel updates the densities according to the fluxes provided. The
advective flux is discretized using the automatic volume-of-fluid discretization func-
tion which generates a kernel that uses a velocity field as an input and adds the
corresponding fluxes to the diffusive fluxes. A boundary handling for the fluxes as
well as for the densities is included. The possibility of propagating charged species
is provided with a child class that includes the calculation of the charge density and
uses a Poisson Solver to calculate the electrostatic potential. The timeloop for this
child class is shown in Figure 3.3, the variation without electrostatics is implemented
in the parent class and extended with the electrostatic contribution. It starts with
the electrostatics which includes the calculation of the charge density using the ion
density fields that is written to a field including the boundary handling as well as
the actual solving process of the Poisson equation where the electrostatic potential
is written to a separate field. Afterwards the ion fluxes are calculated from the elec-
trostatic potential and the ion densities and are outputted to the flux field where
also the boundary handling is performed on. The ion densities in the density field
are updated using the calculated fluxes in the update kernel. Lastly the boundary
handling for the density is executed which is the final call in a single time step.

42



charge
kernel

boundary
handling:

charge

poisson
solver flux kernel

boundary
handling:

flux

update
density

boundary
handling:
density

density field
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Figure 3.3.: Sketch of the used calling-order of the kernels in the lattice electrokinetics
implementation.

3.1.4. Two Phase Fluid with Charged Ion Species

The previously described implementations are coupled together for the two phase
fluid together with the charged ion species. The additional coupling contributions
are provided to the models using the described mechanisms. The only additional code
needed is the timeloop which is structured like shown in Figure 3.4. The simulation
starts with zero-initialized force-fields for the fluids which are updated using the
force-calculation kernel including Shan-Chen interactions and other external forces
which are not coupling to the diffusive flux. The two LB fluids are propagated
using the regular timeloop for the fluids including collision and streaming with the
corresponding boundary handlings. Afterwards the diffusive flux for the ion species is
calculated and the boundary handling is applied. This flux is then used to calculate
the friction coupling force for the fluid which is applied in the next timestep. The
advective flux is added to the diffusive flux with an additional boundary handling
call for the fluxes. Finally the ion densities are updated with the calculated fluxes
and the boundary handling for the density is applied.
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Figure 3.4.: Sketch of the used calling-order of the kernels in the full implementation
of the Shan-Chen two phase model as well as the lattice electrokinetics.
The steps for the boundary handlings as well as the illustration of the
fields are omitted.

44



4. Testcases

In the previous section some details of the implementation were discussed, in this
section the tests for the implementation are presented which are used to verify the
correctness of the implementation. First the individual models are tested on their
own starting with the Shan-Chen two component implementation followed by the
lattice electrokinetics implementation. The last testcases shown are using the full
coupling of both models.

4.1. Density Separation and Young-Laplace Surface Tension

In the Lattice Boltzmann Method the pressure in the fluid is given by the equation
of state (2.2.7) which was introduced in Section 2.2.2. It shows that the pressure
in the fluid is related to the local density. The same is true for the Shan-Chen
multiphase model where the equation of state is altered by the potential as shown in
Equation (2.3.5) that is also dependent on the local fluid density. This is especially
relevant in systems where the pressure inside the two fluid components is not equal
which is the case for systems with curved fluid interfaces. This relation is shown
in the following sections for a fluid droplet embedded in another fluid component, a
sketch of the system is shown in Figure 4.1.

(a) (b)

Figure 4.1.: Sketch of a droplet simulation set-up (a) in a fully periodic domain. The
fluid droplet is shown in red and named fluid component A, the outer
fluid is named component B and is shown in blue. A snapshot of the
phase field of the simulation is shown in (b). The simulation domain has
a side length of 128∆x and the radius of the droplet is 30∆x.
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4.1.1. Density Separation

In the first testcase the interaction constant Gσσ′ is varied and the average densities
inside the droplet are measured. The definition of what is accounted to be inside
the droplet and what is outside is done with the phase field χ(~x) defined in Equa-
tion (2.3.13). The threshold value for the interface is chosen to be χ(~x) = 0 and
therefore χ(~x) > 0 is accounted to be inside the droplet. The density curves are
shown in Figure 4.2, the simulation parameters are listed in Table 4.1.
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Figure 4.2.: Average fluid density inside of a fluid droplet for both fluid components
as a function of the interaction constant in a two component Shan-Chen
fluid set-up. For low interaction constants the fluid components do not
separate, while by increasing the interaction constant the separation of
the average fluid density increases and the immiscible fluid component
is displaced.

In this figure it can be deduced that the separation of the fluid components starts
after a specific threshold value for the interaction constant is reached. It can also be
seen that the fluid component B is still present with a strongly diminished density in
the fluid component A even after the droplet has stabilized. This density decreases
with increasing the interaction constant Gσσ′ but does not completely vanish in the
shown parameter range. Therefore, a property of the model is, that in the simulation
of immiscible fluid components there is still a small portion of fluid density left in
the immiscible component.

Table 4.1.: Simulation parameters used for the calculation of the phase separation.

quantity symbol value unit

domain size (100, 100) ∆x

LB fluid densities %A/B 1 ∆m3

∆x
LB relaxation times τA/B 1 ∆t
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4.1.2. Young Laplace Surface Tension

A popular testcase for multiphase fluid implementations is the Young-Laplace equa-
tion. The equation relates the curvature of a fluid interface to the pressure difference
between the two phases forming the interface with the proportionality constant as
the surface tension σ between the phases. The equation reads

∆p = pinside − poutside =

{
σ 1
R in 2D

σ 2
R in 3D

, (4.1.1)

where σ is the surface tension between the two fluid components and R is the prin-
cipal radius of the interface. This relation can be tested on the previously described
set-up of the fluid droplet which is sketched in Figure 4.1.

The simulation is set-up for varying initial radii of the droplet and different in-
teraction coefficients Gσσ′ . In Section 4.1 it was briefly mentioned that the Lattice
Boltzmann fluid density determines the pressure which can be seen in the equation
of state (2.3.5). This relation between the pressure and the fluid density causes the
radius of the fluid droplets to slightly change during the simulation which is why
the radius of the droplet is measured from the simulation. For this measurement
the fluid-fluid interface is used which is defined with the phase field at χ(~x) = 0.
These points on the interface are then used to determine the radius of a circle with
a least-squares fit.

0 32 64 96 128
0

32

64

96

128

Figure 4.3.: Measurement of the droplet radius from the phase field. The values of
the phase field are shown as background colors, the points on the contour
line as yellow marks and the fitted circle is shown as a black line.

The pressure value inside the center of the droplet is estimated using the arithmetic
mean of the four most central points in the droplet. For the outside pressure the
arithmetic mean of the pressure in the corner points is used. The measured pressure
difference is plotted over the inverse droplet radius and is shown in Figure 4.4. For
each dataset corresponding to a specific interaction constant GAB a linear function is
interpolated with a least-squares fit with the only degree of freedom being the slope.
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The fitted parameter is the surface tension σ for this specific interaction constant
according to Equation (4.1.1). The simulation values used are shown in Table 4.2.
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Figure 4.4.: Young-Laplace surface tension relation showing the pressure difference
inside to outside the droplet above the inverse radius of the droplets.
The resulting relation is linear with the proportionality constant as the
surface tension σ which is determined by a linear fit for each interaction
constant separately. A sketch of the system is shown in Figure 4.1.

Table 4.2.: Simulation parameters used for the calculation of the surface tension.

quantity symbol value unit

domain size (128, 128) ∆x

LB fluid densities %A/B 1 ∆m3

∆x
LB relaxation times τA/B 1 ∆t

From the figure it can be seen that the Young-Laplace equation (4.1.1) shows a
good agreement with the parameter fitted to the data points for each interaction
constant. As previously mentioned this fitting procedure is the most convenient
way of measuring the surface tension for a specific set of model parameters because
of the unknown dependency of the surface tension on the model parameters. The
measured surface tensions provided in the labels of the figure are also shown over the
pseudopotential fluid-fluid interaction strength in Figure 4.5.
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Figure 4.5.: Measured surface tension from the linear interpolation in Figure 4.4 over
the pseudo-potential fluid-fluid interaction strength. The surface ten-
sion seems to be approximately linearly increasing with the interaction
strength GAB although there is no analytical equation known that pre-
dicts this behavior.

4.2. Poiseuille Flow

The Navier-Stokes Equation (2.2.2) is difficult to solve and only a few analytic results
results are known. To validate the correctness of the implementation of the numeric
solvers testcases are needed. Especially useful and robust are testcases with an
analytical solution. For the case of fluid simulations the Poiseuille flow is such a
possible set-up. There are different geometric shapes for which the analytical solution
is known, the one discussed here is the Poiseuille flow between two parallel plates
with the distance h apart which is depicted in Figure 4.6.

0

h
y

x

y

~vx

Figure 4.6.: Sketch of a planar Poiseuille flow set-up in two dimensions on the left
with velocity vectors shown in between the two plates. On the right the
corresponding velocity curve is shown.
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Because the set-up of the problem of the infinite parallel plates requires the solution
to be invariant to shifts in the direction parallel to the plates, and the solution should
be the stationary state upon applying the constant body force density ~f = f~ex, the
problem is significantly simplified. The solution can only depend on the relative
position orthogonal to the plates and, with the boundary conditions of a vanishing
fluid velocity at the surfaces, also the pressure is constant in the system. Therefore
a constant pressure in the system is assumed and the resulting partial differential
equation to be solved reads

∂2
yvx(y) = −f

µ
, (4.2.1)

with the two boundary conditions

vx(0) = 0 vx(h) = 0. (4.2.2)

The solution to this equation can be trivially calculated by integrating Equation (4.2.1)
twice with respect to the y-coordinate and resolving the two integration constants
with the boundary conditions from Equation (4.2.2):

vx(y) = − f

2µ
y (y − h) . (4.2.3)

This is a standard test for single phase Lattice Boltzmann implementations and is
shown here for the sake of completeness. The result for a single parameter set is
shown in Figure 4.7 with the parameters in Table 4.3.

Table 4.3.: Simulation parameters used for the calculation of the single phase
Poiseuille flow.

quantity symbol value unit

domain size (5, 50) ∆x

LB fluid density % 1 ∆m3

∆x
LB relaxation time τ 1 ∆t

external force f ext
x 10−5 ∆m

∆x2 ∆t2

The more interesting testcase for the implementation is the extension to the two
phase Poiseuille flow, similar to the work in [31] although the used model is different.
The governing equation in the fluid components is the same as for the one-phase
testcase in Equation (4.2.1) with the only difference that the dynamic viscosity is
not necessarily equal between the two components. This means that in each fluid
component Equation (4.2.1) has to be solved with the respective dynamic viscosity
µA/B:

{
∂2
yv

A
x (y) = − f

µA
for fluid A

∂2
yv

B
x (y) = − f

µB
for fluid B.

(4.2.4)
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Figure 4.7.: Comparison between the lattice Boltzmann simulation for a Poiseuille
flow to the analytic solution given by Equation (4.2.3).

The boundary conditions for the velocities from Equation (4.2.3) are still valid but
additional boundary conditions for the fluid interfaces are introduced. The shear
stresses and the velocities of the fluids at the fluid interfaces have to be continuous.
This has to be preserved for every fluid interface. If the fluid interface is positioned
at y = h0 the conditions can be written as

−µA∂yv
A
x (y)

∣∣
y=h0

= −µB∂yv
B
x (y)

∣∣
y=h0

(4.2.5a)

vA
x (h0) = vB

x (h0). (4.2.5b)

Two different set-ups are solved analytically in the parallel channel set-up. In the
first system there is only one fluid interface in the channel which separates the two
components, shown in Figure 4.8a. The second set-up is that one fluid component
is embedded between another fluid component as shown in Figure 4.8b. A summary
of the derivation of the corresponding velocity equations is given in Appendix A.1.
The simulation results for two viscosity ratios are shown in Figure 4.9 for the set-up
in Figure 4.8a and the results for set-up 4.8b in Figure 4.11.
It can be seen that the analytic expression does not match the velocity profiles of
the simulation for both shown viscosity ratios. The reason for this mismatch is the
remaining fluid density of the immiscible fluid component inside the opposite fluid
component which was already discussed in Section 4.1.1 and can also be seen in Fig-
ure 4.2. The two fluid components have different viscosities, and because the fluid
components are not completely immiscible, the effective viscosity is influenced. A
priori it is not clear how the resulting viscosity quantitatively looks like. To make this
point more clear, two miscible fluid components are set-up with the same viscosity
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Figure 4.8.: Sketches of the two different two-phase set-ups with the fluid A marked
in blue and fluid B marked in red. In (a) the set-up with only one fluid
interface separating the two phases is shown. (b) is showing the set-up
with the central slice of fluid B embedded in fluid A. In both shown
cases the blue fluid component is of higher viscosity.

contrast but with different fluid density ratios in the same channel. The expected
results of the velocity profile follow the one-phase Poiseuille flow profile as seen in
Figure 4.7 but with different effective viscosities. These results for these simulations
are shown in Figure 4.10 where the analytic solution uses a linear interpolation be-
tween the fluid viscosities based on their densities. It can be seen that the effective
viscosity of the immiscible Shan-Chen fluid components is influenced by the remain-
ing density of the immiscible component. Therefore the velocity profiles in Figure 4.8
are also analyzed with the fluid viscosities as fitting parameters, and the resulting
profiles seem to match the simulated values very well.
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Figure 4.9.: Simulation results of immiscible two-phase Poiseuille profiles with dif-
ferent viscosity ratios. A sketch of the simulation set-up can be seen in
Figure 4.8a. (a) shows the velocity profile for the case where the fluid
on the left of the domain is of higher viscosity and (b) shows the op-
posite set-up. In (c) the fluid density profiles are shown which is equal
for both cases of the viscosity ratios. The used kinematic viscosities are
ν1 = 7

18
∆x2

∆t and ν2 = 1
6

∆x2

∆t . The fitted dynamic viscosities are shown in
the figures and have the units [µ] = ∆m

∆x ∆t . The discrepancy between the
analytical solution and the simulation is due to effective viscosity effects
which are the result of the remaining fluid density of the immiscible fluid
component.
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Figure 4.10.: Simulation results of miscible two-phase Poiseuille profiles with the
same viscosity ratios but different density ratios. The analytical so-
lution is calculated from a density-based linear interpolation of the vis-
cosities. The used viscosities are ν1 = 7

18
∆x2

∆t and ν2 = 1
6

∆x2

∆t . (a)
shows the velocity profile for the case of the fluid densities in the ratio
of 1 : 0.05 and (b) the ratio 1 : 1. The dynamic viscosities are shown
in the figures and have the units [µ] = ∆m

∆x ∆t . It can be seen that the
effective viscosity is influenced by the fluid density ratio which is the
reason for the discrepancy in the simulation results of Figure 4.9.
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Figure 4.11.: Simulation results of immiscible two-phase Poiseuille profiles with dif-
ferent viscosity ratios. A sketch of the simulation set-up can be seen in
Figure 4.8b. (a) shows the velocity profile for the case where the outer
fluid in the domain is of higher viscosity and (b) shows the opposite
set-up. In (c) the fluid density profiles are shown which is equal for
both cases of the viscosity ratios. The used kinematic viscosities are
ν1 = 7

18
∆x2

∆t and ν2 = 1
6

∆x2

∆t . The fitted dynamic viscosities are shown
in the figures and have the units [µ] = ∆m

∆x ∆t . The discrepancy between
the analytical solution and the simulation is due to effective viscosity
effects which are the result of the remaining fluid density of the immis-
cible fluid component.
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4.3. Shan-Chen Contact Angle

In simulations of fluid droplets it is often of interest to also include boundaries such
as walls and investigate the wetting behavior of fluid droplets. In Section 2.3.3 the
treatment of boundaries in the Shan-Chen model was discussed. In this testcase
the ability to enforce different contact angles is shown together with the method of
measuring the contact angle.

Measurement of the Contact Angle

The measurement of the contact angle of a simulation is a crucial point when dis-
cussing the wetting behavior of fluid phases. In the simulations there is no direct
access to the surface tensions which is why the contact angle is measured geometri-
cally. There are different approaches to measuring the contact angle but all have in
common that the contact line has to be determined. For this the phase field is used
together with the Marching Squares/Cubes algorithm [32] which is an algorithm of
finding points on contour lines or isosurfaces within a domain. Because in this work
ideal fluid droplets are simulated one can make use of the analytically known shape
of the droplet which forms a sphere cap that minimizes the contact area between the
fluid components while keeping the volume constant. Therefore one can make use
of this shape by fitting a circle/sphere to the points on the contact line where the
center and the radius are the fit parameters. With this information one can calculate
the contact angle at the surface analytically by assuming a circle with radius r that
intersects a horizontal line. The exemplary set-up where the center of the circle is
below the horizontal line is depicted in Figure 4.12a.
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Figure 4.12.: Sketches to visualize the derivation of the contact angle in both the
wetting state (a) as well as the non-wetting state (b).

A right triangle can be found from the center of the circle to the intersection point
with the horizontal line where the contact angle γ is defined. This can be used to cal-
culate the radius of the circle from the width w and the height h. The corresponding
equation reads
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r2 = (r − h)2 +
(w

2

)2
r =

4h2 + w2

8h
. (4.3.1)

The contact angle γ can then be simply expressed in terms of the inner angle α by
using the fact that the contact angle is defined between the horizontal line and the
tangent line on the circle at the intersection point. The corresponding equations are
reading

γ =
π

2
− α =

π

2
− arccos

( w
2r

)
=
π

2
− arcsin

(
r − h
r

)
. (4.3.2)

The resulting parameters from the fitting procedure can trivially be used in Equa-
tion (4.3.2) to calculate the contact angle. For the case that the center of the circle is
above the horizontal line, which corresponds to a droplet in the non-wetting state as
shown in Figure 4.12b, the derivation of the equation for the contact angle is similar
and results in the same equation. The reason for this is that the part of the circle
below the horizontal line is identical to the set-up in Figure 4.12a.

Simulation Results

The described measurement method is applied to a fluid droplet at a wall with
different contact angles enforced by tuning the interactions of the fluid components
with the wall. The simulation parameters used are listed in Table 4.4. The model used
to enforce the contact angles is described in Section 2.3.3. The wall-interactions are
chosen to be GWA = −GWB equal in magnitude but opposite in sign. One fixed initial
set-up is used with different fluid-wall interactions. This procedure is performed for
two boundary conditions of the density in the wall because in the literature those
are often not clearly specified. The reason for this is that this boundary condition
has no physical meaning, and is just an implementation artifact because the force
calculation stencil is not altered with the introduction of walls. Therefore the force
calculation accesses the density of cells and they have to have some value. The most
often boundary condition used in the literature is a Dirichlet boundary condition
forcing the non-physical density values in the wall to a fixed value which ensures
that the individual force contributions vanish. The second boundary condition is a
Neumann boundary condition which is used in this work and forces a vanishing fluid
density gradient normal to the wall.

Table 4.4.: Simulation parameters

quantity symbol value unit

domain size (300, 200) ∆x

LB fluid density % 1 ∆m
∆x3

LB relaxation time τ 1 ∆t

Shan-Chen interaction GAB 6 ∆x3

∆m
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Dirichlet Boundary Condition

For this boundary condition the nonphysical fluid density in the wall is set to zero
which is mathematically a Dirichlet boundary condition for the density. The fluid-
fluid interaction forces are calculated according to Equation (2.3.3) and the boundary
condition removes individual contributions from non-physical fluid cells, which are all
wall cells. The result is a large density gradient towards the wall that can cause un-
wanted model artifacts. For the wetting component the force on the wall is attractive
which causes some of the populations to accumulate towards the wall. Because of the
bounce-back implementation for the No-Slip boundary condition these populations
are reflected back but are attracted by the same force again in the next iteration.
This effect causes the populations to accumulate in the first boundary cell towards
the wall in the wetting phase, or to deplete in the non-wetting phase. Two snapshots
of the simulation are shown in Figure 4.13 showing the fluid droplet in the wetting
state 4.13a as well as in a non-wetting state 4.13b.

50 75 100 125 150 175 200 225 250
0

25

50

75

100

(a)

100 125 150 175 200
0

25

50

75

100

(b)

Figure 4.13.: Simulation snapshots showing a part of the simulation domain contain-
ing a droplet at different wetting states at a wall using the Dirichlet
boundary condition for the fluid density in the wall. The yellow marks
show the positions of the surface which are calculated with the march-
ing squares algorithm and the black line is the corresponding fit of a
circle which is used for the contact angle calculation.

In the simulations two ideal non-mixing fluids are simulated which is the reason that
the expected shape of the interface contour-lines are perfect circles in two dimensions
or perfect spheres in three dimensions for the contour-surface. From the Figure 4.13
it is clearly visible that in both cases the contact line does not form a circle which is
most noticeable in the area close to the wall. This result is unexpected and causes
the circle-fitting method of measuring the contact-angle to produce wrong results.

Neumann Boundary Condition

The Neumann boundary condition for the fluid densities is implemented by a Neumann-
by-Copy approach where the density directly in front of the wall-cell is copied into
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the wall-cell. This causes the gradient between the two involved cells to vanish. The
motivation for using this boundary condition is to eliminate the force contributions
coming from the fluid cells near the walls, and not just forcing individual terms to
vanish as it is done with the Dirichlet approach. The reason for this boundary con-
dition is that the Shan-Chen force is mathematically a discretization of a gradient as
shown in Equation (2.3.4).

Again two snapshots of the simulation for the same simulation parameters as in
Figure 4.13 are shown in Figure 4.14.
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Figure 4.14.: Simulation snapshots showing a part of the simulation domain contain-
ing a droplet at different wetting states at a wall using the Neumann
boundary condition for the fluid density in the wall. The yellow marks
show the positions of the surface which are calculated with the march-
ing squares algorithm and the black line is the corresponding fit of a
circle which is used for the contact angle calculation.

In can be seen that the interface points match a circular shape really well as it is
expected analytically. For these systems the plots for the measured contact angles
above the interaction strength is shown in Figure 4.15. It can be seen that the
pseudopotential interaction is capable of producing different wetting states for a fluid
droplet corresponding to different contact angles at a wall by using the Neumann
boundary condition for the non-physical fluid densities in the wall. Therefore the
Neumann Boundary condition is used of the remainder of this thesis, and is the
preferred choice for modeling wall-fluid interactions.
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Figure 4.15.: Measured contact angles for different values of the interaction strength
with the wall using the Neumann boundary condition for the fluid den-
sities.

4.4. Advection Diffusion

The most simple case to test the lattice electrokinetics implementation for uncharged
species is the diffusion of a concentration droplet for which an analytic solution is
known. A concentration droplet is set-up in the origin of the domain and the time
evolution including the diffusion and the advection of the concentration is described
by the advection-diffusion equation in Equation (2.4.1). The equation reads

∂tn(~x, t) = ~∇ ·
(
D~∇n(~x, t)− ~vn(~x, t)

)
(4.4.1)

and can be solved for the Dirac-delta peak at the center of the domain as the
fundamental solution using a variety of techniques including Fourier transformation
if the velocity is constant within the simulation domain. The solution for d dimensions
reads

n(~x, t) =
n0

(4πDt)
d
2

exp

(
−(~x− ~vt)2

4Dt

)
. (4.4.2)

Because of the discretization in the simulation the fluid droplet is approximated by a
single cell which is initially filled with the target concentration. The time evolution
of the system is calculated and can be compared to the analytical solution, two
snapshots of the simulations are shown in Figure 4.16, the simulation parameters
used are listed in Table 4.5. The comparison to the analytical solution is done with
a diagonal slice through the center of domain. The resulting positions are shown as
offsets to the expected center of mass through the Galilei-transformation. First the
data for a pure diffusive system is shown in Figure 4.17a after 100∆t and after 2000∆t
in 4.17b. It can be seen that the analytical solution matches to the simulation results
nicely. The second simulation is for an advective system as shown in Figure 4.16 and
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the comparison after 100∆t is shown in Figure 4.17c and after 2000∆t in 4.17d. In
these figures it can be seen that especially for later simulation times the position of
the peak is captured very well but the density of the peaks does not match exactly.
Because the pure diffusive system is not showing this mismatch it is evident that the
reason has to be the discretization of the advective flux as shown in Equation (2.4.15).
This artifact is already mentioned in the original paper for the discretization [23].
It is called spurious diffusion and is present in all sorts of discretizations for the
advective flux. According to the authors of the paper this discretization method
already reduces the strength of the spurious diffusion compared to other methods
and is negligible for practical applications.
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Figure 4.16.: Simulation snapshots of the concentration field for the advection-
diffusion testcase after 100∆t in (a) and after 2000∆t in (b). The
advective contribution is driving the droplet to the top right and the
diffusive contribution is spreading out the concentration. The simula-
tion parameters used are shown in Table 4.5.
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Table 4.5.: Simulation parameters used in the advection-diffusion testcase.

quantity symbol value unit

domain size (100, 100) ∆x

diffusion coefficient D 0.05 ∆x2

∆t
ion density n 1000 1

∆x3

velocity ~v (0.01, 0.01) ∆x
∆t

fluxes per cell 4
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Figure 4.17.: Particle density of a pure diffusive system in (a) and (b). The simulation
values are shown as blue crosses and the analytic solution as a red
line. In the second row the simulation results for an advective system
are shown. The positions are provided in the rest frame of the initial
density peak. The mismatch of the densities in the advective system is
the result of the discretization of the advective flux term.
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4.5. Electroosmotic Flow

The second test set-up using the lattice electrokinetics implementation also includes
the coupling of charged species to a single component Lattice Boltzmann fluid. The
testcase is known as Electroosmotic flow which is set-up in a planar channel. Ana-
lytical solutions as testcases for the lattice electrokinetics algorithm are difficult to
obtain especially including electrostatics. The corresponding equation describing the
analytical electrostatic potential is known as the Poisson-Boltzmann equation which
is shown in Equation (4.5.1). It is a well known equation relating the electrostatic po-
tential of charged ion species to their local concentration which is assumed to follow
the Boltzmann statistics.

∆Φ(~x) =
ez

εε0
n0e
− ezΦ(~x)

kBT (4.5.1)

n(~x) = n0e
− ezΦ(~x)

kBT (4.5.2)

In the shown formulation only one ionic species with valency z is assumed. Analytical
solutions to this equation are only known for very few cases. One of those can be
obtained for a system of two infinite planar plates carrying a surface charge density.
In this set-up a charge neutral fluid is enclosed within two infinite parallel plates,
both charged with the same fixed surface charge density. The counterions for the
charged plates are in solution between the plates such that the overall system is charge
neutral. A sketch of the system step is shown in Figure 4.18 where the surface charge
of the planar walls is shown with the blue stripes and the ions in the solution are
shown exemplary as circles but are treated continuously with a number density.
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Figure 4.18.: Sketch of the planar channel simulation set-up with the fluid trapped
between two charged planar walls. The counterions are shown with
circular ions but are calculated with a continuous density approach.

The analytic solution for the density of the ions is determined from the electrostatic
potential which is obtained by solving the shown Poisson-Boltzmann equation (4.5.1).
For this this system the equation reads
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∂2Φ(y)

∂y2
= − ez

εε0
n0e
− ezΦ(y)

kBT . (4.5.3)

The reason the problem reduces to the one-dimensional case is that the system is
translational invariant in all directions except for the one normal to the plates, which
forces the analytical solution to also obey these invariances. Even with this reduction
of the complexity the analytic solution is not trivial to obtain. The derivation of the
solution can be found in [33, p. 30], in this work only the solutions are shown, which
read

Φ(y) = −kBT

ez
log


 εε0C

2

2n0kBT

1

cos2
(
ezC

2kBT
y
)


 , (4.5.4)

for the electrostatic potential and the ion distribution is given by inserting the
obtained solution in the definition of the density in Equation (4.5.2)

n(y) =
εε0C

2

2kBT

1

cos2
(
ezC

2kBT
y
) |zy| eC

2kBT
<
π

2
. (4.5.5)

The solution equations include a variable C which has to be determined using the
transcendental equation

C tan

(
zed

4kBT
C

)
= − σ

εε0
, (4.5.6)

which is related to the electrostatic boundary condition and has to be solved nu-
merically for the specific set of parameters of the simulation. From this stationary
state of the ions, the system can now be exposed to an external electric field which
is aligned parallel to the plates. This field drives the ions in the solution, which also
causes the fluid to move because of the friction coupling that drags the fluid along
with the ions. The external applied electric field does not influence the previous
solution of the density profile due to the invariance of the profile in the direction
the field is applied. Therefore the applied force due to the friction coupling is fully
determined from the external applied field and in consequence only dependent on the
local charge density of the ions which is known from Equation (4.5.5). This allows
the Stokes equation for the velocity profile to the written as

∂2vx(y)

∂y2
= −q(y)E

µ
, (4.5.7)

where µ is the dynamic viscosity of the fluid and vx(y) the velocity profile of
the fluid. The result can be calculated by integrating Equation (4.5.7) twice and
eliminating the two integration constant by enforcing the boundary conditions
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vx(±d/2) = 0. (4.5.8)

The resulting velocity profile is given by

vx(y) =
2Eε0εkBT

µq
log




cos
(

qC
2kBT

y
)

cos
(

qC
2kBT

d
2

)


 . (4.5.9)

This analytic solution is compared to the simulation results which is obtained using
the previously described models. The system is simulated in two dimensions where
one of them is periodic. For the fluid a single phase Lattice Boltzmann fluid is used
which is enclosed within two walls which are prescribed using the No-Slip boundary
condition. For the ions only one species is simulated which is trapped inside the
simulation domain by No-Flux boundary conditions at the walls which are also im-
penetrable for the fluid. The surface charge is explicitly placed on the walls. For the
electrostatic potential the Poisson equation is solved using a SOR-solver for which
a Neumann-Boundary condition is imposed for the first layer inside the wall. The
boundary condition imposed for the Poisson equation is in this case not of relevance,
a constant potential boundary condition instead of the Neumann one gives the same
result. The reason for this is the symmetry of the problem with respect to the chan-
nel center which requires the electrostatic potential to be equal at the boundaries
and therefore a Dirichlet constant potential boundary condition is just a shift in the
potential compared to the Neumann boundary condition. The result of the density
profile together with the analytic solution can be seen in Figure 4.19a. The same
figure set-up for the velocity profile is shown in Figure 4.19b. Both results agree very
well with the calculated analytical solution. The parameters used for the simulation
are provided in Table 4.6 but the agreement with the analytical curve is not restricted
to the parameter set provided here.
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Table 4.6.: Simulation parameters used in the electroosmotic flow testcase. The re-
sulting density profile is shown in Figure 4.19a and the velocity profile in
Figure 4.19b.

quantity symbol value unit

domain size (6, 48) ∆x

diffusion coefficient D 0.25 ∆x2

∆t
energy unit kBT 1 ∆E

valency z 1

vacuum permittivity ε0 1 e2 ∆t2

∆m ∆x3

relative permittivity ε 1
ion density n 0.0006 1

∆x3

surface charge density σ 0.0144 e
∆x2

external electric field E −10−5 ∆m ∆x
∆t2 e

LB fluid density % 1 ∆m
∆x3

LB relaxation time τ 1 ∆t
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Figure 4.19.: Simulation results together with the analytical solution for the elec-
troosmotic flow testcase. A sketch of the simulation set-up can be seen
in Figure 4.18. In (a) the density profile and in (b) the velocity profile
of the system is shown. The electrostatic potential is calculated with
a Neumann boundary condition for the potential inside the wall. The
fluid is coupled to the ions with a friction coupling and driven with an
external electric field. The simulation parameters used are shown in
Table 4.6.
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4.6. Heaviside Separation

All the previously described cases only test parts of the algorithm which are either
the fluid itself or one component fluids with ions but never include multiple fluid
components with ions. Therefore a new testcase is developed which includes multiple
fluid components as well as the couplings to the ions [27], and still can be solved
analytically. The analytic system described in [34] is a one-dimensional problem
which is set-up with two solvents A and B which are present in separate half spaces.
If the interface is positioned at x = 0, the half-space x < 0 is fully occupied by
solvent A and x > 0 by solvent B. Each of the solvents has its respective dielectric
permittivity εA/B. In the system monovalent anions and cations are present as solutes
with the bulk densities nA/B in the respective solvents. The solvation free energy
difference for the ionic species between the two solvents is given by ∆µ+/−. A
schematic representation of the system is shown in Figure 4.20.
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Figure 4.20.: Schematic representation of the one-dimensional system set-up. The
solvent phases are shown in orange and purple and are present in sep-
arate half-planes. The ion number densities are shown in red and blue
for the anions and cations, respectively.

In [34] this systems is solved analytically using a classical density functional theory
approach that is fundamentally solving the very same equations as the discretization
for the ionic species used in this work. For that a piecewise Debye screening factor
will be defined which reads

κ2(x) =
e2z2

ε0kBT





nA
εA

x < 0
nA
εB

x ∈ (0, s)
nB
εB

x > s

=





κ2
A x < 0

κ2
i x ∈ (0, s)

κ2
B x > s

(4.6.1)

where e is the elementary charge, z = 1 the valency and s is a free parameter
which is defining a length that can be used to capture interfacial smoothing effects.
This parameter is relevant if the fluid density profile or the dielectric permittivity
profile deviates from the analytical assumed Heaviside-function. From the free en-
ergy density formulation as well as the electrostatic Poisson equation the linearized
Poisson-Boltzmann equation for the shifted electrostatic potential can be derived
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∂2(Φ(x)− ΦDΘ(x− s))
∂x2

= κ2(x)(Φ(x)− ΦDΘ(x− s)) x /∈ {0, s} , (4.6.2)

where Θ(x) is the Heaviside function and ΦD = ∆µ+−∆µ−
2 is known as the Donnan-

potential. The solution to this equation with the piecewise definition of the screening
factors in Equation (4.6.1) can be found in [34] and reads

Φ(x) =
ΦD

D





exp (κAx) x < 0

cosh (κix) +
√

εA
εB

sinh (κix) x ∈ (0, s)

− exp (−κB (x− s))
√

nA
nB

(√
εA
εB

cosh (κis) + sinh (κis)
)

x > s

(4.6.3)

with D =
(

1 +
√

εAnA
εBnB

)
cosh(κis) +

(√
εA
εB

+
√

nA
nB

)
sinh(κis).

The analytical solution is compared with two separate simulation set-ups which are
shown in the following. The first system is set-up in two dimensions where half of
the system is filled with fluid component A and the other half with component B.
The simulation domain is rectangular with the side-length of interest chosen to be
100∆x in length which is non-periodic. The other direction has 6∆x nodes in length
and is chosen to be periodic. The boundaries of the domain in the non-periodic
direction is set-up with No-slip boundary conditions for the fluid components which
is supposed to keep the fluid in place. The bulk values for the ion densities are
chosen equal for both components and are distributed uniformly in the simulation
domain. The non-periodic boundary is treated with a Dirichlet boundary condition
for the ion densities which is set to the bulk-density. The electrostatic potential is
solved using the SOR-method with a Neumann-boundary on the domain edges to
enforce a vanishing electric field. The Gibbs transfer energy ∆µ is chosen to be equal
in magnitude but opposite in sign between the ion species and different values are
simulated. All relevant simulation parameters are listed in Table 4.7.
The simulations are run for 106∆t timesteps and the ion density profiles are plotted
together with the corresponding analytic solutions. The case of equal dielectric per-
mittivity for both solvents the solutions are shown in Figure 4.21 where for all the
analytical solution s = 0 was used.
The results for the more complex case of a spatial varying dielectric permittivity ε(~x)
are shown in Figure 4.22 where again s = 0 is used for the analytic solution.
This set-up is also simulated in a periodic set-up to also test the implementation of
the FFT-based Poisson solver. Therefore a larger system is set-up in fully periodic
boundary conditions where now the number of ions in the system is fixed. This set-up
now features two of the fluid interfaces due to the period boundary conditions which
have to be apart far enough to reduce the influence on each other. The parameters
which differ from the previous simulation (Table 4.7) are provided in Table 4.8. From
the two forming interfaces only the one in the center of the domain is observed and
the results are shown in Figure 4.23.
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Table 4.7.: Simulation parameters used in the Heaviside density simulation set-up
with the non-periodic set-up using the SOR-solver for the Poisson equa-
tion.

quantity symbol value unit

domain size (100, 6) ∆x

diffusion coefficient D 0.0070 ∆x2

∆t
energy unit kBT 1 ∆E

valency z 1

vacuum permittivity ε0 0.0014 e2 ∆t2

∆m ∆x3

relative permittivity ε 80
ion density n 0.0006 1

∆x3

LB fluid density % 20 ∆m
∆x3

LB relaxation time τ 1 ∆t

Shan-Chen interaction GAB 0.3 ∆x3

∆m

Table 4.8.: Simulation parameters used in the Heaviside density simulation set-up
with fully periodic boundary conditions which are different from the ones
provided in Table 4.7. The Poisson equation is solved with the FFT-based
Poisson solver.

quantity symbol value unit

domain size (500, 5) ∆x

All the shown results, especially those who a calculated with the SOR-based solver,
show a very good agreement with less than 5 % deviation to the analytical solution
except for the interface area. In the order of O (±3∆x) the diffusive fluid-fluid in-
terface is present that, together with the discretization artifacts, causes a smearing
effect on the ion-density between the fluid components. Another reason for deviations
is that the analytical solution only solves the linearized Poisson-Boltzmann equation
whereas the simulation is solving the non-linear Poisson-Boltzmann equation. This
difference is especially relevant at the fluid-fluid interface where non-linear effects
are expected to have the largest influence. To counteract this contribution the ion
density is chosen relatively low such that non-linear effects are less prominent but
are expected to increase with larger differences in the solvation free energy as well as
with larger ion densities.
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Figure 4.21.: Simulation results of the Heaviside simulation set-up with constant di-
electric permittivity ε which is schematically shown in Figure 4.20. The
local anion and cation density is shown for each position. In the dif-
ferent subfigures the simulation parameters are changed which involve
the ion density n, the dielectric permittivity ε and the Gibbs-transfer
energy ∆µ. The simulation values are shown as marks and the ana-
lytical solution as continuous lines with the same color-coding in all
shown plots. All non-explicitly provided simulation parameters used
are shown in Table 4.7.
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Figure 4.22.: Simulation results of the Heaviside simulation set-up with spatially
varying dielectric permittivity ε(x) which is schematically shown in Fig-
ure 4.20. The local anion and cation density is shown for each position.
In the different subfigures the simulation parameters are changed which
involve the ion density n, the dielectric permittivity ε and the Gibbs-
transfer energy ∆µ. The simulation values are shown as marks and the
analytical solution as continuous lines with the same color-coding in all
shown plots. All non-explicitly provided simulation parameters used
are shown in Table 4.7.
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Figure 4.23.: Simulation results of the Heaviside simulation set-up with spatially
varying dielectric permittivity ε(x) in fully periodic boundary condi-
tions. The set-up is schematically shown in Figure 4.20. The local
anion and cation density is shown for each position at one of the two
interfaces. In the different subfigures the the dielectric permittivity ε of
one component is changed. The simulation values are shown as marks
and the analytic solutions as continuous lines with the same color-coding
in all shown plots. All non-explicitly provided simulation parameters
used are shown in Table 4.8.

72



4.7. Electrophoretic Mobility

The final testcase of the code implemented in this work includes the full coupling
of all algorithms implemented as in the previous testcase. The set-up of the system
is again a fluid droplet embedded in an immiscible fluid component with a uniform
ion distribution within the system. The fluid set-up is similar to the one used in
testcase 4.1 with fully periodic boundary conditions. A Gibbs transfer energy ∆µa/c
is imposed for the ions in such a way, that a specific charge is trapped within the
droplet. A sketch of the set-up is shown in Figure 4.24.
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Figure 4.24.: Sketch of the system set-up for the measurement of the electrophoretic
mobility with a Gibbs transfer energy imposed on the ions to effectively
charge the fluid droplet. The different colors correspond to different
fluid components. The droplet is then driven with an external electric
field.

The simulation parameters used are listed in Table 4.9 and are chosen to correspond
to a grid size of ∆x = 1 nm, a salt concentration of 1 mM, a fluid density of 103 kg

m3 and
a initial droplet charge of −1 e. This set-up is equilibrated and used as the starting
point for simulations with different external electric fields applied to the system. Since
the droplet aquires a net charge, it is accelerated through the simulation domain up
to a final velocity which is determined from the balance of friction force and the
acceleration force γ~v = m~a. This velocity is measured for different applied electric
fields and charges of the droplet. For sufficiently small applied electric fields one
expects a linear response of the terminal velocity on the applied electric field,

~vterminal = µ~E. (4.7.1)

The ion density profile of the equilibrated set-up without an external electric field is
shown in Figure 4.25 together with the concentration curves calculated with COM-
SOL. COMSOL is a widely used physical simulation package solving continuity equa-
tions using the finite element method. The set-up used is slightly different and con-
sists of a non-penetrable sphere in the center of the domain with an imposed surface
charge which is comparable to the simulated system for the area outside the sphere.
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The reason is that in this system the concentration curves are only influenced by
electrostatic forces, which are identical for a sphere with fixed surface charge, a ho-
mogeneous volume charge density and a point charge. The ion distribution within the
droplet shows two density peaks at the interface to the surrounding fluid component.
The reason for these peaks are that the ions are trapped within the droplet because of
the Gibbs transfer energy. Inside the droplet electrostatic forces drive the ions apart
which results in the characteristic density peaks towards the surface of the droplet.
The measured terminal velocity of the droplet is shown in Figure 4.26 for two charges
of the droplet. From the plot it can be seen that the terminal velocities match to
the proportionality curve as expected. The resulting mobilities can also be compared
to measurements from the COMSOL simulation. When comparing these values one
has to be aware of the differences in the simulations. The COMSOL system consists
of a hard-sphere with no-slip boundary conditions for the fluid on the surface, which
are different boundary conditions than for a physical fluid droplet that allows for a
surface velocity. Because of this difference it is expected that the COMSOL mobili-
ties are smaller when compared to he ones measured in Figure 4.26. The measured
mobilities read ~vCOMSOL

terminal = 0.001 39 ∆t e
∆m for q = −1 e and ~vCOMSOL

terminal = 0.002 50 ∆t e
∆m

for q = −2 e. As expected, both of these values are slightly smaller.
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Figure 4.25.: Ion density profiles of a slice through the center of the droplet with-
out external electric field. The continuous lines are calculated using
COMSOL with a fixed surface charge density qsurface = 0.0176 e

nm2 on
a sphere of radius R = 9 nm in the center of the domain.
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Figure 4.26.: Measured terminal velocity of the droplet above the applied electric
field strength for the simulation. The mobility is the proportionality
constant measured with a least-squares fit.

Table 4.9.: Simulation parameters used in the electrophoretic mobility testcase.

quantity symbol value unit

domain size (128, 128) ∆x

diffusion coefficient D 0.0070 ∆x2

∆t
energy unit kBT 1 ∆E

valency z 1

vacuum permittivity ε0 0.0014 e2 ∆t2

∆m ∆x3

relative permittivity ε 80
ion density na/c 0.0006 1

∆x3

LB fluid density %A/B 20 ∆m
∆x3

LB relaxation time τA/B 9.8619 ∆t

Shan-Chen interaction GAB 0.3 ∆x3

∆m
Gibbs transfer energy ∆µa/c ∓3.7,∓5.5 ∆E
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5. Application: Salt-dependent Contact
Angle

In Section 2.1 the altering of the wettability of oil droplets in the vicinity of brines of
different salinity was introduced which is experimentally observed in [2]. The imple-
mentation of the different models was done with the goal of observing the wettability
changes in the simulation. To achieve this, an oil droplet is simulated as two non-
compressible immiscible Lattice Boltzmann fluids using the Shan-Chen model with
one component initially placed as a half sphere at the wall and the other component
filling the remaining outer space. The different wetting states are enforced with the
pseudopotential interaction of the fluid with the wall as introduced in Section 2.3.3
which was shown to achieve different contact angles in the testcase in Section 4.3 by
imposing a non-physical Neumann boundary condition for the density at the wall in
the force-calculation. To include the ions in the simulation the lattice electrokinetic
model is used. It is initially set-up with two separate ion species for monovalent
anions and cations which are initially configured uniformly in the simulation do-
main. For the boundary conditions the wall is placed at the bottom of the domain
using a No-Slip boundary condition for the Lattice Boltzmann fluid populations, the
aforementioned Neumann boundary condition for the fluid densities, the Shan-Chen
boundary force for the wettability and the No-Flux boundary condition for each of
the ion species. For the fluids the same boundary conditions are used on the opposite
side of the domain and a constant density boundary condition is imposed for the ions
to provide a specific ion density in the outer bulk phase of the ions. In the remaining
direction a periodic boundary condition is used.

γA

B

Figure 5.1.: Sketch of a slice through the center of the droplet of the initial simulation
set-up. The ions are not shown but are distributed uniformly in the
simulation domain.
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For these systems the well known Young equation [35] describes the relation between
the contact angle and the surface tensions in the system. It reads

cos(γ) =
σWB − σWA

σAB
, (5.1)

where σWB is the surface tension between the surrounding fluid component and the
wall, σWA the surface tension between the droplet and the wall and σAB the surface
tension between the two fluid components. From this equation it can be seen that
the sign of the difference between the surface tensions with the wall are the factor
determining if the droplet equilibrates towards a wetting or a non-wetting state.

In the following simulations the Gibbs transfer energy for the ions is always chosen
equal for both species to avoid the droplet and prefer the surrounding fluid compo-
nent. Because all parameters for the ions are equal, the behavior is also equal which
means that the system is electroneutral for every grid cell. Therefore electrostatics
does not contribute to the forces in this system. At first a reference simulation is
performed without ions for different contact angles. Afterwards the system is simu-
lated for different ion concentrations and different Gibbs transfer energies. In each
simulation run, the contact angle is measured using the Marching Squares algorithm
to find the fluid-fluid interface as described in Section 4.3.

These simulations are specifically set-up in such a way, that the ions avoid the
droplet but are uniformly distributed in the outer fluid component. Assuming that
the ions do not influence the surface-tensions of the fluids with the wall σWA and
σWB, the only influence of the ions is a density gradient at the fluid-fluid interface.
This gradient results in an additional normal force only on the fluid-fluid interface
which is equivalent to an increase in the fluid-fluid surface tension

σnew
AB = σAB + σ∗, (5.2)

where σnew
AB is the updated surface tension, σAB the surface tension for the system

without ions and σ∗ is the influence of the ion interaction. The contact angle for the
new surface tension σnew

AB is given by the Young-equation (5.1) and reads

cos(γ0 + ∆γ) =
σWB − σWA

σnew
AB

=
σWB − σWA

σAB + σ∗
, (5.3)

where γ0 is the reference contact angle without the ions in the system and ∆γ is
the contact angle change. Rearranging Equation (5.1) to eliminate the fluid surface
tensions with the wall σWA − σWB and substituting it in Equation (5.3) allows for
the separation of the contact angle difference ∆γ

∆γ(γ0) = arccos

(
cos(γ0)

σAB

σAB + σ∗

)
− γ0. γ0 ∈ [0°, 180°] (5.4)

To show that this function is odd with respect to the reference contact angle γ0 = 90°
the substitution γ0 = 90°+γ′ can be made. Using the relations cos(90°+x) = − sin(x)
and arccos(−x) = 90° + arcsin(x) the equation can be rewritten
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∆γ(γ′) = arcsin

(
sin(γ′)

σAB

σAB + σ∗

)
− γ′ γ′ ∈ [−90°, 90°] . (5.5)

The oddness of the contact angle difference can easily be seen by plugging −γ′ in
the equation and using sin(−x) = − sin(x) and arcsin(−x) = − arcsin(x). As ex-
pected the result is ∆γ(−γ′) = −∆γ(γ′). Qualitatively this means that with the
introduction of the ions the contact angle of the droplet is shifted towards 90° in the
wetting as well as in the non-wetting case. Furthermore, one expects the additional
surface tension contribution σ∗ to increase with the ion density as well as with the
Gibbs-transfer energy which also results in an increase in the contact angle change
∆γ.

The contact angle measured in the simulations for different ion densities and Gibbs-
transfer energies are shown in Figure 5.2a. The simulation parameters used are
listed in Table 5.1. Because the differences in the measured contact angles are rather
small, a different visualization is added that corresponds to the analytic expression
in Equation (5.4) for the difference in the contact angles. For the simulation data
this reads

∆γ = γ − γ0. (5.6)

This quantity is shown above the reference contact angle in Figure 5.2b. From this
figure it can be seen that results are qualitatively matching to the expected analytic
result, the expected zero crossing at the 90°-simulations are recovered, the small
mismatches for some of the simulations are artifacts of the lattice resolution. Because
the change in the surface tension σ∗ only depends on ion parameters and not on the
reference contact angle the shown point symmetry of the contact angle difference
in Equation (5.5) is also expected in the curves for a fixed Gibbs-transfer energy
and a fixed ion density. This symmetry observation cannot be seen in the curves,
the difference in the contact angle is significantly larger in the non-wetting case
compared to the wetting case. The reason for this behavior is not clear. This means
that either the assumption that the ions only alter the fluid-fluid surface tension σAB

in this set-up is wrong, or that there are simulation artifacts which have to be further
investigated to be able to apply this model for more complex systems. This problem
is also present for smaller and larger droplets as well as for a smaller surface tension
σAB simulated with GAB = 5.5 ∆x3

∆m as it can be seen in Figure 5.3. The change
in the contact angle difference between the simulations of different surface tension
σAB shows that even without the correct symmetry the contact angle difference is
significantly increased in the case of a lower surface tension. This behavior is expected
because the change of the surface tension σ∗ is the same for both simulations and
therefore has a larger influence if the fluid-fluid surface tension σAB in the system
is smaller. From the curves it can also be seen that the expected influence of the
Gibbs-transfer energy and the ion density on the contact angle difference increases
for both of the parameters.
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To analytically predict the change for the contact angle the only missing quantity
for Equation (5.4) is the change in the surface tension σ∗ because the remaining
quantities can be extracted from previous simulations (Section 4.1.2 and 4.3). To
measure the altered surface tension σnew

AB the same approach as in Section 4.1.2 could
be taken where the Young-Laplace equation is used to calculate the surface tension
by measuring the radius and the pressure difference for a fluid droplet. The problem
with this approach is that equation of state for this system is not known. The reason
is that the ions alter the equation of state for the system similar to the changes
in Equation (2.3.5) with the introduction of the Shan-Chen forces. The original
approach for the derivation of the equation of state in [15] can not be taken due to
the difference in the mathematical form of the forces which not only act on the fluid
but also on the ions. At the point of writing it is not clear how the derivation of the
equation can be done but it is necessary for the comparison because the computed
pressure in the simulations is influenced by the presence of the ions. This could then
also be used as a reference point for the simulation results to help figure out the
reason for the observed mismatch of the expected symmetry.

Table 5.1.: Simulation parameters used in the contact angle simulations.

quantity symbol value unit

domain size (300, 140) ∆x

diffusion coefficient D 0.0700 ∆x2

∆t
energy unit kBT 1 ∆E

valency z 1

LB fluid density % 1 ∆m
∆x3

LB relaxation time τ 1 ∆t

Shan-Chen interaction GAB 6 ∆x3

∆m
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Figure 5.2.: Measured contact angle (a) for a fluid droplet at different initial contact
angles without ions and with ions with different Gibbs-transfer energies
and ion densities. The difference of the contact angle to the reference
system without ions is shown in (b) where Equation (5.6) was used for
the calculation. The simulation parameters are listed in Table 5.1.
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Figure 5.3.: Measured contact angle (a) for a fluid droplet at different initial contact
angles without ions and with ions with different Gibbs-transfer energies
and ion densities in the same configuration as in Figure 5.2 with the
difference that a lower fluid-fluid surface tension σAB with GAB = 5.5 ∆x3

∆m
is used. The difference of the contact angle to the reference system
without ions is shown in (b).
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6. Summary and Outlook

In this work the Shan-Chen multicomponent extension for the Lattice Boltzmann
Method was successfully implemented using the pystencils and lbmpy code-generation
framework. Moreover, we developed several testcases. For this model we use a virtual
fluid density inside walls to enforce different wetting states of fluid droplets. This pro-
cedure has been shown to enforce different contact angles of a fluid droplet at a wall.
In these simulations it was demonstrated that the regular stencil force-calculation for
the Shan-Chen interaction at the wall could not be used without modification and
the non-physical fluid density boundary condition has to be adjusted. The contact
line was estimated using a marching squares/cubes algorithm and the contact angle
was measured geometrically by fitting a circle to the contact line.

A lattice electrokinetics solver was also successfully implemented in the pystencils
framework including a solver for the electrostatic Poisson equation. This imple-
mentation was also tested against problems with analytical solutions. The coupling
between the two models using the Gibbs-transfer energy has been adapted from the
literature to depend on the phase field for multicomponent simulations which re-
moves a non-physical input parameter to the simulation that has to be extracted
from separate simulations. These couplings were also tested against an analytical
solution and a linear response scaling behavior.

The implemented models were used to investigate the influence of surface effects to
the contact angle in oil-water wetting phenomena. A reference simulation was set-up
to verify the correct behavior of the simulation. The system was set-up in such a way
that the ions impose an additional surface force on the fluid-fluid contact line of the
fluid droplet which results in an increase in the surface tension that can be compared
to an analytical linear response approximation. The resulting measurements do not
feature the analytic predicted symmetry and the reason for this behavior is not
presently understood. A different approach to predict the contact angle change which
could help to resolve this open issue was discussed, however could not be applied due
to the unknown equation of state of the system under investigation.
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Outlook

The investigation of the influence of surface effects on the contact angle could not be
completed in this work because the reference simulation showed an unexpected and
probably unphysical behavior. After resolving this problem, more complex surface
effects can be investigated e.g. surface charge densities, spatially varying dielectric
permittivity or the modeling of ion-wall interactions that depend on the fluid com-
ponent present which could model changes in the chemical nature of the surface.

In systems with spatially varying dielectric permittivity, the permittivity is calcu-
lated from the phase field which itself is a function of the fluid densities. Therefore,
the permittivity is formally a function of the fluid density which gives rise to an addi-
tional electrostatic force contribution known as the polarization force. A derivation
for this additional term is outlined in Appendix A.2.

A further contribution that could be interesting is the inclusion of chemical reac-
tions which can be done with an additional source term in the lattice electrokinetics
equations. This would allow the system to be simulated at different pH values, cor-
responding to the simulation of H3O+ and OH− ions. This reaction equation can
also be spatially dependent therefore allowing for the modeling of catalytic surfaces.

In dynamic systems a spatially varying diffusion coefficient can have an influence
on the ion distribution. The systems used in this thesis all assume a uniform diffusion
coefficient in the domain that can be different between species but not vary spatially.
To include such a spatially varying diffusion coefficient formally an additional source
term in the differential equation should appear. The implementation discussed in
Section 3 already includes this feature but was not used in this work.

For dynamic systems it is possible that thermal fluctuations can have a significant
influence on the fluid flow or the density distribution in the system. Such fluctua-
tions can be added to the models. For the Lattice Boltzmann Method the thermal
fluctuations are introduced in the mode-space on all non-physical modes and is al-
ready included in the lbmpy framework. For the lattice electrokinetics the thermal
fluctuations are performed on the fluxes, which is described in [36]. This can give
rise to a fully thermalized two-component electrokinetic model that should be useful
when considering nano-sized domains.
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A. Derivations

A.1. Derivation of the Two-Phase Poiseuille Flow

The derivation of the two-phase Poiseuille flow solutions in this work are solving
the regular Stokes equation with the respective dynamic viscosity in the respective
domain with an additional boundary condition for the fluid interfaces.

A.1.1. One Fluid Interface

The system set-up is sketched in Figure 4.8a and includes a single fluid-fluid interface
and both fluid components have contact with one of the wall each. Assuming the
interface at height h0 the Stokes equations read

{
∂2
yv

A
x (y) = − f

µA
for 0 ≤ y ≤ h0

∂2
yv

B
x (y) = − f

µB
for h0 ≤ y ≤ h.

(A.1.1)

Compared to the one-phase Poiseuille flow the equations have doubled in the amount
of unknowns which also forces additional formulations for the boundary conditions.
The No-Slip boundary conditions in Equation (A.1.2a) are known from the regular
Poisson flow and only have to be transferred to the corresponding velocity. The
additional boundary conditions are formulated at the interface between the two fluid
components. The first condition is that the fluid velocity has to be continuous at
the fluid interface which is formulated in Equation (A.1.2b). The second additional
condition is formulated for the shear stress at the fluid interface which is also forced
to be continuous and is formulated in Equation (A.1.2c).

vA
x (0) = 0 = vB

x (h) (A.1.2a)

vA
x (h0) = vB

x (h0) (A.1.2b)

−µA∂yv
A
x (y)

∣∣
y=h0

= −µB∂yv
B
x (y)

∣∣
y=h0

(A.1.2c)

With the additional boundary conditions the unknown velocity profile is fully deter-
mined. For solving the two partial differential equations (A.1.1) the ansatz

vA
x (y) = aAy

2 + bAy + cA

vB
x (y) = aBy

2 + bBy + cB

(A.1.3)

is used which can also be found by integrating Equations (A.1.1) twice with respect
to the positions y. This also eliminates the first two unknowns aA and aB.
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aA = − f

2µA
aB = − f

2µB
. (A.1.4)

With the two No-Slip boundary conditions in Equation (A.1.2a) one can eliminate
two more unknowns from the equations

cA = 0 cB = −aBh
2 − bBh. (A.1.5)

The stress boundary condition in Equation (A.1.2c) is used to fix the relation between
the two unknowns bA and bB where the results in (A.1.4) have been used

µA (2aAh0 + bA) = µB (2aAh0 + bB)

µAbA = µBbB. (A.1.6)

The last remaining boundary condition (A.1.2b) therefore reads

aAh
2
0 + bAh0 = aB

(
h2

0 − h2
)

+ bB (h0 − h) . (A.1.7)

Using the relation in Equation (A.1.6) one can separate the remaining unknown bB

bB =
aAh

2
0 − aB

(
h2

0 − h2
)

h0

(
1− µB

µA

)
− h

. (A.1.8)

The complete solution therefore reads

vA
x (y) = − f

2µA

[
y2 − µA

(
h2

0 − h2
)
− µBh

2
0

µA (h0 − h)− µBh0
y

]

vB
x (y) = − f

2µB

[
(
y2 − h2

)
− µA

(
h2

0 − h2
)
− µBh

2
0

µA (h0 − h)− µBh0
(y − h)

]
.

(A.1.9)

A.1.2. Two Fluid Interfaces

The system set-up is sketched in Figure 4.8b and this time includes two fluid-fluid
interfaces. This means that one fluid component is fully separating the other fluid
component in two slices and does not have contact with the wall. Assuming the two
fluid-fluid interfaces are at height h1 and h2 the equations read

{
∂2
yv

A
x (y) = − f

µA
for x ∈ [0, h1] ∪ [h2, h]

∂2
yv

B
x (y) = − f

µB
for x ∈ [h1, h2] .

(A.1.10)

Due to the initial set-up of the problem two fluid interfaces are present in the system.
This allows the formulation of the boundary conditions on the interfaces by just using
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the continuity of the velocity. The reason is that now two fluid interfaces are present
and only one of them is enough to fully determine the free parameters from the
Poiseuille flow as sees in the previous calculation. The boundary conditions read

vA
x (0) = 0 = vA

x (h) (A.1.11a)

vA
x (h1) = vB

x (h1) (A.1.11b)

vA
x (h2) = vB

x (h2). (A.1.11c)

To solve the equations the same approach as in Equation (A.1.3) is taken which uses
the ansatz

vA
x (y) = aAy

2 + bAy + cA

vB
x (y) = aBy

2 + bBy + cB

. (A.1.12)

The quadratic factors can both be directly determined from the differential equa-
tions (A.1.10)

aA = − f

2µA
aB = − f

2µB
. (A.1.13)

In this case the two No-Slip boundary conditions in Equation (A.1.11a) fully deter-
mine the solution for fluid component A

cA = 0 bA = −aAh (A.1.14)

The two leftover unknown can both be calculated by solving the system of equations
given from the two velocity boundary conditions (A.1.11b) and (A.1.11c). One way
is to subtract one equation from the other to fix bB and plug the resulting solution
into one of the equations to calculate cB. The resulting relations for the parameters
read

bB = (aA − aB) (h1 + h2) + bA (A.1.15)

cB = (aA − aB)h2
1 + (bA − bB)h1. (A.1.16)

The complete solution therefore reads

vA
x (y) = − f

2µA
y (y − h)

vB
x (y) = − f

2µB

[
y2 − y

(
h1 + h2 +

µB

µA
(h− h1 − h2)

)
+ h1h2

(
1− µB

µA

)]
.

(A.1.17)
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A.2. Derivation of the Polarization Force

The goal is to find an expression for the body force fi of a dielectric fluid element
which is exposed to a electric field Ei. The derivation is based on [37, pp. 64–69]. For
this an expression for the stress tensor σij has to be derived which can be transformed
to the body force with

fi =
∂σij
∂xi

. (A.2.1)

Considering a volume element dV of a layer of dielectric fluid of thickness h which has
without the loss of generality parallel side planes. Furthermore this volume element
is supposed to be of uniform and isotropic temperature T and density %. The electric
field in this volume element can be thought of the one created by two conducing
plates with appropriate surface charge.

Starting the calculation of the force on the volume element by displacing the upper
plate by an infinitesimal virtual vector ξi. Since this change is infinitesimal small the
potential at each point in this volume element does not change and the deformation
is supposed to be homogeneous and isothermal. The resulting force on the surface of
the volume element is given by −σijni, the work done by this virtual displacement
can be written as −σijniξj . For this displacement the variation of the density and
the variation of the electric field are given by

δ(%) = −%δ(h)

h
= −%niξi

h

δ(Ei) = −Ei
δ(h)

h
= −Ei

njξj
h

, (A.2.2)

where both quantities are just stretched to the new volume and the variation of
the height is given by δ(h) = niξi. The work done in this displacement is equivalent
to the decrease in

∫
F̃dV where F̃ is the thermodynamic potential per unit volume

which is defined for isotropic dielectric media as

F̃ (T, %,Ei) = F0(T, %)− ε(%)E2

8π
, (A.2.3)

where F0(T, %) is the Helmholtz-free-energy per unit volume without an electric
field and ε(%) is the permittivity. This change in the thermodynamic potential can
also be expressed as the change per unit surface hF̃

σijniξj = δ(hF̃ ) = hδ(F̃ ) + F̃ δ(h). (A.2.4)

The isothermal (δ(T ) = 0) variation of the thermodynamic potential F̃ is given by

δ(F̃ ) =

(
∂F̃

∂%

)

T,E

δ(%) +

(
∂F̃

∂Ei

)

T,%

δ(Ei) =

(
∂F̃

∂%

)

T,E

δ(%) +
ε(%)Ei

4π
δ(Ei) (A.2.5)
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which can be substituted in Equation (A.2.4) together with the expressions for the
variations in (A.2.2) results in

σijniξj =


Eiε(%)Ej

4π
− %

(
∂F̃

∂%

)

T,E

δij + F̃ δij


niξj . (A.2.6)

To further simplify this expression for the stress tensor one can make use of the
thermodynamic relation for the pressure

(
∂F0

∂V

)

T,%

= −p0(T, %) (A.2.7)

which can be rewritten as


 ∂

∂
(

1
%

)
(
F0

%

)


T

= F0 − %
(
∂F0

∂%

)

T

= −p0(T, %). (A.2.8)

Considering the central term in the expression for the stress tensor (A.2.6) and plug-
ging (A.2.8) together with the definition for the thermodynamic potential (A.2.3)
results in

−%
(
∂F̃

∂%

)

T,E

= −%
(
∂F0

∂%

)

T

+
E2

8π
%

(
∂ε(%)

∂%

)

T,E

= −p0(T, %)− F0 +
E2

8π
%

(
∂ε(%)

∂%

)

T,E

= −p0(T, %)− F̃ − εE2

8π

[
ε(%)− %

(
∂ε(%)

∂%

)

T,E

]
. (A.2.9)

This expression can be substituted in (A.2.6) results in the final expression for the
stress tensor

σij = −p0(T, %)δij −
E2

8π

[
ε(%)− %

(
∂ε(%)

∂%

)

T,E

]
δij +

ε(%)EiEj
4π

. (A.2.10)

The body force fi can now be calculated with Equation (A.2.1)

fi = − ∂

∂xi
p0(T, %)+

1

8π

∂

∂xi

[
E2%

(
∂ε(%)

∂%

)

T,E

]
−E

2

8π

∂ε(%)

∂xi
+

1

4π

[
∂

∂xj
(ε(%)EiEj)−

ε

2

∂E2

∂xi

]
.

(A.2.11)
The last expression of this equation can be shown to vanish because of ~∇· ε(%)~E = 0
and ~∇× ~E = 0
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∂

∂xj
(ε(%)EiEj)−

ε

2

∂E2

∂xi
= Ei

∂

∂xj
(ε(%)Ej)

︸ ︷︷ ︸
~∇·ε~E=0

+ε(%)Ej
∂Ei
∂xj
− ε(%)Ej

∂Ej
∂xi

= −ε(%)Ej

[
∂Ej
∂xi
− ∂Ei
∂xj

]

︸ ︷︷ ︸
~∇×~E=0

= 0 (A.2.12)

which results in the final expression for the polarization force

~f = −~∇p0(T, %) +
1

8π
~∇
[
E2%

(
∂ε(%)

∂%

)

T,E

]
− E2

8π
~∇ε(%). (A.2.13)

This expression for the force does not consider the presence of charges which can be
simply added

~f = −~∇p0(T, %) +
1

8π
~∇
[
E2%

(
∂ε(%)

∂%

)

T,E

]
− E2

8π
~∇ε(%) + %charge

~E. (A.2.14)

In the context of two component simulations one can use a linear model for the
dielectric permittivity

ε(%) = a%+ b (A.2.15)

where a, b ∈ R are constants. Evaluating the partial derivative of the permittivity
in expression (A.2.14) results in

%

(
∂ε(%)

∂%

)

T,E

= %a = ε(%)− b (A.2.16)

which can be substituted and after applying the product rule to the expression
including the substitution simplifies the expression for the body force to

~f = −~∇p0(T, %) +
ε(%)− b

8π
~∇E2 + %charge

~E. (A.2.17)
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