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1 Introduction

Polymers are wide spread in nature and thus are of general concern of research throughout
different disciplines. They occur in research of new materials for energy conservation, they
occur in application that demand highly specialized mechanical property, and they occur in
new flexible production technics. But how can they be treated in the perspective of physics,
how can there behavior be described or even foreseen, and how general is such a description.
In this handout I want to give a summary of the talk ”Physics of polymer solutions an poly-
mer gels”from a elaborated and unrestrained perspective.

According to the presentation the topics of this handout are the general treatment of polymer
chains in ideal and real fashion. This will lei the theoretical ground for the investigation of
polymers in solution. There the core part will be the understanding of the topic-over-spanning
phase diagramm. The next thougth that will be added is the bonding of Polymers to form
networks and finally polymer gels. Achieving an understanding of polymer gels will be crucial
for understanding polymer gels and networks as porous media, which is the topic of the
seminar. If not stated otherwise the used source for this handout is the book [2].

2 Polymers

Mr. Staudinger in the 1920 first proposed that polymers could be macromolecules, consisting
of N reoccuring monomers that are covalent bonded into the macromolecule. Where the
monomers are elementary units but not necessarily periodically reoccurring nor consisting of
single atoms. Mostly polymers can be described as long chains of covalent bonded monomers
but polymers are not restricted to single branches instead they can have several branches
with periodic order or without. Thus to treat all polymers with one general physical model
is not yet successful and hardly thinkable. To get an understanding of the physical processes
with polymers it shall be enough to treat polymer chains that consist of one backbone branch
with 2 ends and one sort of monomers of length l. An example of such a polymer is given by
the polylactide polymer from picture 1.
Generally speaking polymers in their solid state are amorphous. Because of that they have

Abbildung 1: [1] The Picture shows a polylactide (PLA) polymer chain in standard chemical
convention. The square brackets with the suffix N mean that there are N many
monomers like the marked one inside a chain. For standard (PLA) the chain
size reaches N = 1000.

a glass transition temperature to get into the molten state. Next to this phases, properly
chosen solvent and polymers can form a solution with a variety of phases for different mixing
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ratios and temperatures. The physics of such polymer solutions, polymer solids or polymer
melts are strongly affected by the existence, degree and kind of bonding between polymers.
Speaking of bonds the topic of polymer gels is entered. The starting point of polymer physics
is the mathematical treatment of the configuration space monomer positions from a flexible
polymer. The objective of a treatment is to determine the size of a polymer chain with its
N monomers. This is relevant because size can enter multiple (> 6) orders of magnitude and
thus dramatically alter the polymer interactions such as friction and many others.

3 Ideal chain

A basic understanding of polymers and their scaling in length with N is achieved by inves-
tigating polymer chains with one branch, one monomer type and no interaction of different
monomers what so ever. Thus in this simple picture it is enough to imagine only one polymer
chain and to ignore nonphysical motion like interpenetration of different monomers. Entering
this assumptions there is still a wast number of different models. The most important one is
the freely-jointed-chain (FJC). In this model the bond angle between to neighboring polymers
is not restricted by any means.
There are two different ways to get mathematically the first grip on polymer chains. One
is about random walk theory and one deals with random vectors in 3 dimensions from the
beginning.

3.1 Vector approach

We select at first the second approach and start by measuring the length of a polymer using
the sum

~RN =

N∑
i=1

~ri (1)

of the individual monomer vectors ~ri. This approach yields no information about a typical
scale of polymer lengths because the length vary between different individual polymers. Thus
building the mean value of ~RN seems helpful. But building the mean value yields mathema-
tically exact 〈~RN〉 = 0 because the problem is highly isotropic. But the standard deviation
of the value 〈~RN〉 contains the length information and can be calculated with

R :=

√
〈~R2

N〉 − 〈~RN〉2 =

√
〈~R2

N〉 =

√√√√〈 N∑
i=1

~ri

N∑
j=1

~rj〉 =

√√√√ N∑
i=1

N∑
j=1

〈~ri~rj〉. (2)

In this formula it is essential to know the correlation 〈~ri~rj〉 between the monomer vectors.
But with the expression

~ri~rj = l2 · cos(θij) (3)

for the dot product and the knowledge of random bond angles θij it is visible that the mean
value of the cosine results often the value zero in the terms of the sums in calculation 2.
But there are exactly N terms where the θij-angle is zero due to comparing monomers to

itself according to i = j. Because of that the calculation yields R = l ·N
1
2 . Raising the R to

the third power yields a rough estimation of the volume that one of this ideal chains pervades.
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3.2 random walk approach

As indicated the final result of this approach is for our purpose the formula R = l · N
1
2 ,

but the approach derives a hole probability distribution. The starting point of the derivati-
on is the 1 dimensional random walk with step length l. After N steps this yields an end
positions x between −N and N from the starting point. The number of pathways to each
position follows the binomial distribution

( N
N+x

2

)
thus the probability distribution emerging

the Laplace-experiment is

P1D =

( N
N+x

2

)
2N

. (4)

By applying the logarithm and approximating the facultys inside the binomial function with
the Stirlings-formula n! ≈

√
2πn

(
n
e

)n
a Gaussian-curve is yielded that need to be normalized

according to usage as probability distribution. The last step in this approximation is to rescale
the x-axis of the Gaussian-curve according to the step length l. The yielded distribution

P1D = (2πNl2)−
1
2 exp

(
−R2

2Nl2

)
(5)

assigns a positive probability density to each position in the 1D space which is physically
not thinkable because the polymer chain has a finite length. Thus this approximation is
only a good approximation for the most likely states. Also the continuous treatment of the
probability is only reasonable for N >> 1. The desired result R = l · N

1
2 is achieved from

the standard deviation of the Gaussian-function. Also to expand the Gaussian-function in 3
dimensions is easily achieved. While expanding the length l of a step size need to be carefully
revisited because the steps are done in diagonal directions as well. To put this thought in
perspective the next section deals with the basic length l.

3.3 Kuhn monomer

Dealing with other polymer chain models means to deal with some stiffness or in the sense of
formula 2 with some correlation of monomer vectors. For this, one example of model is the
freely-rotation-chain (FRC) from the picture 2.

In there the black monomers are oriented with a fixed purple bond angle. The correlation value
of two neighboring monomers (d=1) gets 〈~ri~ri+d〉 = |cos(θ)d|. To evaluate the calculation 2
for this model it is useful to introduce

Ci =
N∑
j=1

〈~ri~rj〉 with R =

√√√√ N∑
i=1

Ci (6)

as a intermediate value. Because the polymer is long (N >> 1) most of the Ci are calculated
for i inside the polymer far away from one end. Because the correlation drops fast with
d = |i − j| as distance from the end it is reasonable to assume that Ci is independent from
N . In a approximation a mean value C∞ for Ci is calculated and then pulled out of the sum
in calculation 2. This approximations yields

R =

√√√√C ′∞l
2

N∑
i=1

=
√
C ′∞l

2N = b ·N
1
2 . (7)

Here the C prime means that the length of the monomers is pulled out as a factor. Later this
factor is then again included into the l two form the new hypothetical Kuhn monomer length
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Hauptseminar Porous Media SS 2021

09.07.21

Abbildung 2: This drawing visualizes the restrictions and movements of monomers (black)
in FRC-chains. Also Kuhn monomers for the given FRC chain are drawn in
yellow.

b. The visualization of b is colored in yellow in picture 2. With this general treatment of
making the correlation independent of N all the stiffer models like FRC can then be treated
as a FJC with longer monomer lengths b. For FRC carrying out the summation using the
geometric series yields

C ′∞ =

∞∑
j=1

〈cos(θ)|i−j|〉 ≈
j=i−1∑
−∞

cos(θ)|i−j| + 1 +

∞∑
j=i+1

cos(θ)|i−j| (8)

= 1 + 2
∞∑
k=1

cos(θ)k = −1 + 2
∞∑
k=0

cos(θ)k (9)

= −1 + 2
1

1− cos(θ)
=

1 + cos(θ)

1− cos(θ)
. (10)

A general approach in polymer physics is the blob approach. This is essentially a scale separa-
tion in length. In the case that follows it is used to approximate the scaling of the stretching
force ~f with stretched distance R. A typical polymer under stress is drawn in picture 3.

Here it is visible that in the short regimes the chain behaves like a chain doing a random
walk while on the large regime the chain of spheres or blobs is ordered in a nearly straight
line. This allows to determine the blob size ξ as a function of the monomers in the blob g
to ξ = bg

1
2 according to the ideal chain scaling. In the large regime the length of the chain

becomes R = ξ · Ng where N
g denotes the number of blobs. Motivated by F = ~f ·~s as a formula

for the (free) energy the formula for ~f gets ~f = ~∇F with the free energy F . The Free energy
penalty of the polymer for being stretched is approximated by assigning each lost degree of
freedom from the chain the energy E = 1

2kT ≈ kT . The number of lost degrees of freedom
is the number of ordered blobs in a row N

g . Putting the formulas from the two regimes into
the calculation of the free energy

F = kT · N
g

= kT · NR
2

b2N2
= kT · R

2

b2N
(11)
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Abbildung 3: In this picture a typical polymer shape under stretching force ~f is drawn. There
a assumption of a length scale separation with the critical length ξ is reasonable.
This results in the blob approach visualized with the spheres in the drawing.

yields the desired relation for F (R) which allows to calculated ~f = 2 · kT
Nb2

~R by derivation. It

is visible that the force depends linearly on the distance ~R so that the Hooke-law is fulfilled.
Also the temperature dependence is determined. Here higher temperatures reinforces the ~f
despite the fact that this is against the rule for example in metallic solid bodies.
For the finding of formula 11 it astonishingly wasn’t necessary to know the size of ξ. On
the one hand the formula then is simple but on the other hand the formula need to be used
carefully because in the case that g > N there wouldn’t be even one blob. Because of that
the formula 11 only is valid for N > g or R > b2N . This minimum size will be called thermal
blob size. Here it is reasonable to assume that the lost degrees of freedom needed to elongate
to the length R will raise relative to 11 because the gained length decreases when ξ as the
blob size is not valid anymore. Therefor the F is assumed to be greater than equation 11
states for N < g.

4 Real chain

The mathematical treatment of real chains is in general tedious because the main difference
to ideal chains is that the monomers can’t possess the same volume, leading to an impossible
listing of already blocked position in analytical treatment. But this task is bypassed by the
Flory approximation of real chain that will be the goal of the next chapter. To prepare for this
calculation it is important to introduce an approximation of the ”possessed”volume of one
monomer. This thought of blocked volume is expanded to the addition of beneficial distances
to the monomer. Blocked and beneficial monomer distances are mathematically expressed by
the liklyhood of the occurrences derived from the Boltzmann distribution

p =
e−

U(r)
kT∑

e−
U(r)
kT

. (12)

Blocked distances are the ones where the potential is high and beneficial states are the one
where the energy is below zero in other word where the potential has got it’s potential well.
A plausible and wide spread potential is the Lennard-Jones potential

U(r) =
A

r12
− B

r6
(13)

with the parameters A and B that need to be chosen to fit the thickness of the monomer d
and the depth of the potential well. In the further treatment unlikely or likely states shall be
maped on the positive or negative number line. For this the Mayer-function

f(r) = e−
U(r)
kT − 1 (14)
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with its shifting of −1 of the Boltzmann factor is introduced. The Normalization of the
Boltzmann distribution is dropped here because an excluded volume shall be determined.
In the blocked area the amplitude of the Mayer-function shall not be below −1 because
the excluded volume then would have a numeric weight exceeding it physical volume. On
the other end for large distances r f(r) gets zero because no interaction exists and thus no
blocked of beneficial states exist. Summing up the Mayer-function over each possible position
with a volume integral

v = −
∫
f(r)d3r (15)

the excluded volume per monomer v is yielded. With this sign convention repulsion effects
push the excluded volume toward v > 0 where attraction contributions aim for v < 0.
Also with the introduced formula a temperature dependence of the excluded volume with the
Boltzmann-factor is visible. Because of the Lennard-Jones-potential being steep for r < d the
blocked volume or the repulsion contribution doesn’t alter with temperature that much. On
the other hand the potential well loses its dominance with increasing temperature, leading
to less attraction effects. If a U(r) is chosen to have no potential well than the temperature
doesn’t change the excluded volume that much leading to the so called athermal case.
As well as assigning the ideal chain a volume with raising R = bN

1
2 to the third power, the

real chain also pervades a volume. With repulsion effects from v > 0 this real chain volume
R3

F is assumed to be greater than the ideal chain volume R3. More profound the length RF

should fulfill RF > R3 for the same b and N . With this context it is possible to motivate that
the chain is stretched when a real chain behavior is assumed. But stretching is assigned to a
higher free energy as calculated in 11. Then there need to be another contribution to the free
energy so that an elongated chain is beneficial and the equilibrium state. This other energy
contribution is approximated using the average number of monomers that overlap with a
chosen one. This is approximated with v · N

R3
F

where the fraction is a rough estimation of

the mean monomer density inside the pervaded volume. The total number of occurrences of
overlapping is calculated as v · N2

R3
F

. For each occurrence a monomer needs to choose a different

position or bonding angle, hence the degree of freedom is restricted here. This thought yields
a formula for the free energy

F = kT · vN
2

R3
F

(16)

that is mapped to a real polymer length RF. Including the free energy contribution from the
stretching of the chain yield the total free energy

Ftot = kT · vN
2

R3
F

+ kT · R
2

b2N
. (17)

The equilibrium length

RF = b
( ν
b3

)2ν−1
Nν (18)

is now obtained by finding the minimum of Ftot. With this calculation the exponent ν = 3
5 is

yielded but in experimental observations ν is determined to be ν ≈ 0.588. With this result it
is shown that real chains following the statistics of self-avoiding-walks (SAW) obey a greater
scaling with the monomer number N of the polymer than ideal chains do. But the formula
17 for the total free energy does not include the right scaling of the stretching force for small
N . Because the stretching force there is expected to be greater than the formula 11 assumes
the equilibrium for RF is shifted to smaller values and scaling. Below the thermal blob size
v < R3

N2 (or g < N from chapter 2) the scaling is then comparable to the ideal chain scaling

R ≈ N
1
2 .

6
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5 Polymer solutions

Compared to the previous chapters this chapter adds the interactions of different polymers
and the interactions between solvent and the polymers to the observed physics. As a result
some new vocabularies need to be introduced. First there is the differentiation between good
and poor solvents. According to the Mayer-function, the repulsive interaction between the
monomers raises for higher temperature. Then this gets increasingly the dominant energy
contribution to the system of polymers and solvent. Because of that the surface area between
polymer and solvent doesn’t want to be minimized that likely for higher temperatures. Be-
cause of that the polymer chain expands and swells inside the solution. For low temperatures
this process is very likely reversed so that the polymers tries to minimize its surface to the
solvent. In this general discussion the relative energy contributions are relevant. With this
the excluded volume definition is reused in polymer solutions.
The second vocabulary is the dilute or semidilute regime of polymer solutions. Because we
already attached a volume to each polymer in the solution there is the possibility that the
sum of this volume exceeds the experimental volume. In other words there is the possibility
that the pervaded volumes overlap an thus lei the basis for dominant polymer interactions
in the solution. The semidilute regime is the regime with the overlapping. The dilute regime
is the regime where the pervaded volumes don’t overlap. To get from the dilute regime to
the semidilute regime there is the possibility to change the volume fraction φ ∈ [0, 1] of the
polymers in the solution. This means that the polymers inside the solution then make up a
larger and larger part of the volume.
The physics of polymers in solution is as well determined by the free energy and the minimum
of it. By adding solvent to polymers the entropy of mixing Smix make up one contribution
to the free energy

∆Fmix = ∆U + T∆S. (19)

In an approximation the monomers and solvent molecules are treated as equally shaped
cubes that can easily be analytically permuted inside the experiment volume to make up the
different mixing states. Mixing nonzero quantities of polymer and solvent will yield several
possible combination of the mixed state. Because of that the entropy of a mixed state raises
and the mixing process is beneficial in terms of ∆Fmix if ∆U is ignored at first. To get a
quantitative measurement for the entropy of binary mixing of polymers into solvent the first
ansatz is to assume a lattice of cubes with n places filled with nφ monomers an n(1 − φ)
solvent molecules. Before the mixing process the monomers fill up their own volume ending
up in (nφ)! possible configurations. In the following calculations the faculty is neglected. It is
assumed that in fact each monomer and solvent molecule can choose between nφ or n(1−φ)
lattice sites. Also the monomers of the polymer are combined into one element despite the
accurate treatment of the polymer volume. This is only completely right in combinatorics if
a one dimensional array of the cubes is assumed. In other words the different arrangements
of the monomers in the polymer is not kept track of to make the calculation more feasible.
In this assumption the entropy gain while mixing for one polymer molecule is given by

∆SP = kln(n)− kln(n(φ)) = −kln(φ) (20)

where
∆SS = kln(n)− kln(n(1− φ)) = −kln(1− φ) (21)

denotes the entropy gain for the solvent molecule. Within the assumption of the neglected
facultys the total entropy of mixing is denoted by

∆S = nP∆SP + nS∆SS = −k(nPln(φ) + nSln(1− φ)) (22)

= −kn
(
φ

N
ln(φ) + (1− φ)ln(1− φ)

)
(23)
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with the molecule numbers nP = n φ
N of polymers and nP = nφ of solvent. This simplified

calculation already results in a positive entropy for all values φ as expected. Thus mixing is
beneficial to this point. Next is an approximation of the potential energy. Now a different
perspective on the matter of excluded volumes is carried out. Taking over the discrete model
with monomers and solvent molecules in cubes the inter molecular surface is easily defined.
The approach is to assign different kinds of surfaces to different elementary potential energies
uSP, uPP and uSS where S again denotes solvent and P monomers. Now that we know what
energy each inter molecular surface possesses the task reduces to just sum up all surface
energies to get ∆U . Because it is not determined what number of uSP there are if only φ
shall be a variable an approximation is made. One face of a monomer has the mean energy
UP = uSP(1 − φ) + uPPφ if φ is treated like a probability for the cube type of the other
molecule at this face. Of course with that formula is the assumption of periodic boundaries
made. With a similar mean energy per face for the solvent a summation over the z = 6 (for
cubes) faces is conducted. Finally the summation over all cubes yields

U =
zn

2
(UPφ+ US(1− φ)) (24)

as a energy of a configuration with the simple φ dependence. U is evaluated before and after
mixing to receive

∆U = χnφ(1− φ)kT with χ =
z

2kT
(2uSP − uPP − uSS). (25)

χ is the flory-interaction-parameter and obeys the relation χ > 0 for most combinations of
polymer and solvent. With this approximations of the potential energy of mixing and entropy
of mixing the free energy reads

∆Fmix(φ) = nkT

(
φ

N
ln(φ) + (1− φ)ln(1− φ) + χnφ(1− φ)

)
(26)

according to the Flory-Huggins equation. A figure of it is drawn in picture 4

0.0 0.2 0.4 0.6 0.8 1.0
Volume Fraction 

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Fr
ee

 E
ne

rg
y 

F m
ix

lowest tangent
2 Fmix/( 2) = 0

Abbildung 4: This figure presents the characteristic behavior of the ∆Fmix(φ) for N = 2 and
χ = 2.1 . The parameters are optimized for qualitative understanding. Also the
different phases emerging form the curve are marked with background color.
The dark regime signals unstable phases and the light grey background signals
metastable phases.
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For each φ with ∂2∆Fmix(φ)
∂φ2

> 0 the solution is stable in the sense that the solution doesn’t
split up in subvolumes V1 and V2 with different φ1,2. This is because

∆Fmix(φ1,2) = V1 ·∆Fmix(φ1) + V2 ·∆Fmix(φ2) (27)

sits on the secant of the curve ∆Fmix(φ) for slight fluctuations obeying φ1 < φ < φ2. In

general there are also metastable regimes that occur when ∂2∆Fmix(φ)
∂φ2

> 0 acts against phase

separation but there are φ1 < φ < φ2 for which ∆Fmix(φ1,2) on the secant is lower than
∆Fmix(φ).
Because the Flory-interaction-parameter χ has an extra temperature dependence included
the dominance between ∆S and ∆Uresulting in formula 26 changes and leads to the end of
existence of the unstable and metastable phases for large temperatures T . In Figure 5 a phase
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Abbildung 5: It is shown a phase diagram for different polymer solution states under different
conditions for the temperature T and the volume fraction φ. The phase borders
emerge form underlying changes in the length scaling of polymers with N , phase
separation effects and conditions for overlapping of polymer volumes.

diagram is shown that visualizes the existence or nonexistence of unstable or metastable states
for given temperature T and volume fractions φ. This way the first two phases in diagram 5
in grey colors are already explained. Here it need to be mentioned that the phase diagram is
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based on 26, with the parameters N = 2 and χ ∈ [0.8, 4.5]. Thus the parameters are optimized
for visual clarity not for physical plausibility. For low temperatures or in the poor solvent
regime the energy penalty emerging from SP surfaces forces the polymers to from globules
with a length scaling of essentially R = N

1
3 because the monomers fill out the volume of a

sphere. The sphere serves the largest volume for the lowest surface with the solvent. This
length scaling rule is characteristic for the dilute poor regime in 5. For higher temperatures
the relative energy penalty on PS-surfaces is reduced. A counteracting energy contribution is
the Flory energy of overlapping monomers. Taking both into account the scaling law in the
dilute regime is comparable to the ideal chain R = bN

1
2 especially for the θ-temperature this

is valid. In the dilute good regime the repulsive forces of the SAW takes over and yields the
scaling law of real chains R = b

(
ν
b3

)2ν−1
Nν above the thermal blob size and proportional

to N
1
2 below the thermal blob size. When Investigating the semidilute regimes for higher φ

the interaction between the polymers need to be taken into account. The first notion on the
phase diagram 5 is that the semidilute regime exists for lower volume fractions the better the
solvent gets. This is because the same amount of polymers pervade and possess more volume
in the swollen state inside the good solvent. The interactions between the chains lead to the
fact that not only the excluded volume of the own monomers act on the length scaling, but
also the excluded volumes of foreign monomers act on the length scaling. Because of that the
scaling proportional to Nν changes to the smaller N

1
2 above the correlation blob size ξC with

the condition

ξC = b

(
b3

v

) 2ν−1
3ν−1

φ
−ν

3ν−1 . (28)

For the semidilute regime in good solvents three different scalings of R with N emerge. At
the phase diagram border to the normal semidilute regime in figure 5 the intermediate scaling
regime disappears because the correlation blob shrinks with φ at and below the thermal blob
size. Thus in the semidilute regime there is only a single scaling similar to the ideal chain
scaling.

6 Polymer gels

The last part of the handout want to quickly introduce the topic polymer gels, to motivate
that these materials can be treated as porous media. The one aspect that emerges in this topic
compared to the polymer solutions is that polymers in the polymer gel are interconnected to
a degree that the the network extends into macroscopic length scales. These connections can
be of physical nature like the pure physical entanglement of two polymer chains into a helix.
Also charged monomers,... in the polymer can form a connection inside the the network. On
the other hand chemical bonds mostly covalent bonds can form the interconnections. The
differentiation into weak connections and strong connections is made with the argument that
for example H-bonds between monomers can be released while entanglement in a helix is a
rigid connection. The connection type has a strong effect on the dynamical processes inside
the gel. While for weak connections it is possible two rearrange the material in macroscopic
lengths with no limit but the needed time to do so, for strong connections the rearrangement
is restricted to the initial given connections. Further rearrangement will break the polymer
chains and alter the average N of the polymers. In either of the connection types a critical
fraction of made connection pC from the polymers is needed so that the gel pervades the hole
experimental volume. Of course when 1 > pC there are possibilities for polymers to not be
connected to the gel because some possible connections aren’t made. These left out polymers
then form the sol of more or less mobile polymers and polymer bunches. The 3D landscape
of areas of gel and sol then fills the observed structure like a porous media does.

10
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