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1 INTRODUCTION

The phenomenon of Brownian motion was de-
scribed the first time in 1827 by Robert Brown,
while observing pollen under a microscope[16].
Albert Einstein[4] and Marian Smoluchowski [13]
came up first with a theoretical concept to describe
Robert Browns observations, and connect them
to a diffusion coefficient. In general, analytical
solutions of Fick’s laws of diffusion, only exist for
restricted systems and not for diffusion through
porous media. An illustration of gas diffusion
through a single pore is given by Figure 1. Even
in a single pore like in Figure 1, diffusion prop-
erties mostly can not be derived analytically due
to interactions with the pore walls. Consequently,
the description of diffusion in complex porous net-
works becomes difficult. Fundamental concepts of
statistical physics like the time evolution given by
the Fokker-Planck equation or the stochastic trajec-
tory described by the Langevin equation become
very challenging to solve in porous networks.
Complex systems with locally varying diffusion
properties are generally not analytically solvable.
To describe the diffusion in such systems, it is ei-
ther necessary to approximate the system by an
analytically solvable shape or to analyze the par-
ticular system with a computer simulation. For
computer simulations, either MD simulations or
random walk approaches can be used.

Figure 1: Gas diffusion through a pore, containing
molecular interaction and interaction with
the pore wall. [17]

In the first part, we will discuss different diffusion
mechanisms, taking place in porous media, in the
order of pore size. In the second part, diffusion
properties for porous networks will be derived.
Especially hierarchical porosity will be taken into
account.

2 Diffusion Mechanisms in
porous Media

An overview of diffusion mechanisms describing
gas diffusion in a pore is given in Figure 2. De-
pending on the interaction strength of the gas
with the pore and the relation between the pore
diameter d and the free path length in the gas,
different mechanisms can be derived. These dif-
fusion mechanisms can be applied in filtering or
separating different components of mixtures.
For pores smaller than the diameter of the gas
molecules, molecular sieving is obtained (Figure
2, b). For a strong adsorption at the surface, sur-
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Figure 2: Different diffusion mechanisms describing gas
diffusion through a pore. Depending on pore
diameter and interaction with the wall, dif-
ferent diffusion mechanisms can be derived.
[1]

face diffusion can observed (Figure 2, e). The
other gas diffusion mechanisms will treated more
detailed in the following.

2.1 Knudsen Diffusion and Slip Correc-
tions

Knudsen diffusion is a diffusion mechanism de-
scribing the diffusion of a gas through a pore as-
suming a small pore radius. The diffusivity in this
case can be derived from the diffusivity of a free
gas. For a gas, the diffusion coefficient

D =
λv̄

3
=
λ

3

√
8kBT

πm
(1)

results form the kinetic theory of gases[8]. The
mean free path λ = 1/

√
2ρπσ2 depends on the

particle density ρ and the diameter σ of the par-
ticles. The average molecular speed v̄ is given by
the Maxwell-Boltzmann distribution.
For a gas in a pore with a pore diameter d < λ,

shown in Figure 2c the collisions with the pore
wall are more frequent than collisions with other
particles. The diffusion in such a pore is called
Knudsen diffusion[9]. The diffusion coefficient
for Knudsen diffusion in a cylindrical with the
diameter d is given by

DK =
d

3

√
8kBT

πm
. (2)

This diffusion coefficient can be extended for
Knudsen flow in porous media with the pore ra-
dius DP by introducing the material properties

tortuosity and porosity. The tortuosity τ describes
the ratio between the length of the path through
a porous medium and the direct line, connecting
the start- and endpoint of the curve[3]. The poros-
ity Φ describes the ratio between the volume of
void-space and the total volume of the medium.
The diffusivity Deff of the porous medium is given
by [3]

Deff =
Φ

τ
DK. (3)

For derivation of the diffusion coefficient for Knud-
sen diffusion, we have assumed, that the particles
are diffusely reflected at the pore surfaces. Only
a fraction f of the colliding molecules is diffusely
reflected, while the rest of the molecules are spec-
ulary reflected. This leads to a diffusion coefficient

Deff =
DP

3

Φ

τ

2− f
f

√
8kBT

πm
, (4)

where f is called tangential momentum accommo-
dation factor. This factor deoends on the potential
of the pore surface and the gas molecules, but
mostly independent of the drift velocity of the gas
molecules [14].

2.2 Combination of Knudsen diffusion
and molecular diffusion

In larger pores (d > λ) like in Figure 2d, the dif-
fusion consists of molecular diffusion described
by the diffusion coefficient DM as well as of Knud-
sen diffusion. The molecular diffusion can be de-
scribed by viscous flow using the Stokes-Einstein
equation with the temperature dependenceDM ∝
T [9]. Another form of molecular diffusion is ac-
tivated diffusion. A particle is hopping on lattice
and needs to overcome a potential energy bar-
rier Ea to move forward to the next position on
the lattice. An exemplary one dimensional en-
ergy landscape is shown in Figure 3. The tem-
perature dependence of the diffusion coefficient
DM ∝ exp[Ea/(kbT )] is given by the Arrhenius
law.[11] The diffusion coefficient Dc for such a
combined regime is given by[9]

1

Dc
∝ 1

DK
+

1

DM
. (5)

While the temperature dependence of the Knudsen
diffusion is given by DK ∝

√
T .
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Figure 3: An example for the potential energy landscape
of a lattice hopping system. The particle in
the potential energy landscape needs to over-
come the energy barrier to leave its initial
place.[11]

2.3 Hydrodynamic Origin of Diffusion in
Nanopores

Simulations of gas molecules in nanopores show
that molecules do not behave like gas molecules,
which collide with the interface and get reflected,
as we assumed deriving the diffusion coefficient
for the Knudsen dynamics. This is shown by
molecular dynamics (MD) simulations of Lennard-
Jones Methane in a cylindrical silica pore.[2] The
density profile shows, that most of the methane
molecules are localized at the potential minimum
close to the silica surface.
Furthermore, different diffusivities in the previ-
ously described pore can be derived. By using
equilibrium molecular dynamics (EMD) a trans-
port coefficient can be obtained form the fluctua-
tion axial streaming velocity via the Green-Kubo
relation. This transport coefficient matches with
the transport coefficient, which is obtained from a
system with a constant axial acceleration by mea-
suring the axial flux and the density of methane
in the pore. The results also matches with the
transport properties measured in a finite capillary
connected to a dual control. In this case, two con-
trol volumes on the opposite sides of the pore with
different particle densities cause a flux through
the pore. We also expect the same diffusivity for
all three methods form statistical physics.

For the total diffusion coefficient, a expression
containing viscous flow as well as slip flow can be
written as[2]

Dtot(ρ̂) =
2kBT

R2
s ρ̂

[
1

kρ0r0

(∫ r0

0
rρ(r)dr

)2

+

∫ r0

0

dr

rη(r)

(∫ r

0
0r
′ρ(r′)dr′

)2
]
.

(6)

The part of the diffusion coefficient (6), which is
received by assuming viscous flow only matches
with the value of the simulation for high densities
of methane (lower part of (6)). This term vanishes
for small densities, while the simulations show a
non-vanishing behavior for small densities caused
by slip-effects. The degree of slip is considered
in the upper part of the term for the diffusion
coefficient (6).
To calculate the diffusivity given in (6), it is

necessary to know the radial density profile ρ(r)
as well as the radial viscosity η(r).
For small densities if we replace ρ(r) ∝ e

aΦm
KBT by

the Boltzmann distribution, we receive a diffusiv-
ity

D ∝ eaΦm/(kBT ) (7)

with an 0 < a < 1 and the energy Φm at the
potential minimum. We obtain activated diffusion
with the effective activation energy/energy barrier
of ED = a|Φm|.

2.4 Motion through diffusive land-
scapes

Movement in porous media mostly is subject to a
diffusive landscape and not a constant diffusivity.
The diffusion coefficient D(r, t) in porous media
can be depending on place as well as time. Thus,
a particle trajectory runs through different areas
with different diffusivities, illustrated on the left
side in Figure 4.
A measurable property is the self-correlation func-
tion given by

G(r, t) = 〈δ(R(t)−R(0)− r)〉. (8)

This characteristic can be obtained obtained from
computer simulations or in an experimental way
using confocal microscopy, which tracks particles
in real space and time. The temporal development
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of G(r, t) can also be described by the Fokker-
Planck equation. Unfortunately, no common solu-
tion for this equation exists.
An experimentally more significant property is
given by the Fourier transformation of G(r, t),
which reads

I(q, t) =

∫
G(r, t)eiqrdr. (9)

This intermediate scattering function can be ob-
tained using pulsed-field gradient nuclear mag-
netic resonance (PFG NMR) measurements.
Due to the absence of a general analytical solution,
just approximated systems can be treated analyti-
cally. The diffusive landscape can often be divided
in domains (Figure 4, left). Where the potential
energy and the diffusivity is set to a constant aver-
age value. In the following, domains with similar
properties are clustered into a finite number of
diffusive states[12]. The transition between the
states is characterized by the mean first-passage
time. This time describes the mean time the sys-
tem remains in a certain state before leaving it.
A connected network of states (Figure 4, right)
arises. Especially the limiting cases of very fast
and very slow switching between states compared
to the intra-domain dynamics can be studied[12].
The slow switching limit is defined for systems,
in which for all states i the mean first-passage
time tiFP is much larger than the intra-domain re-
laxation time tirel ∝ 1/Diq

2. In other words, the
system relaxes to equilibrium in each state before
switching into another state. The intermediate
scattering function is given by

Islow(q, t) =
M∑
i=0

cie
−Diq

2t. (10)

Where ci is the equilibrium fraction of particles in
domain i.
The fast switching limit applies to systems with
tiFP � tirel for all domains. In this case, the tra-
jectory averages over all domains respectively all
states mostly instantaneously. The intermediate
scattering function is given by

Ifast(q, t) = e−
∑M

i=0 ciDiq
2t = e−D̄q

2t. (11)

We obtain an effectivemedium described by the av-
erage diffusivity D̄ =

∑M
i=0 ciDi. Systems, which

combine surface diffusion and diffusion in the
free pore space, assuming the displacements in
both regimes are uncorrelated, lead to the same
relation for the average diffusivity.

Figure 4: The left side shows a trajectory through a diffu-
sive landscape divided into the domains a− e.
The right picture shows the network of dynam-
ical states obtained from the landscape on the
left. [12]

2.5 Molecular intermittent dynamics of
water

The interaction of confined water with a strongly
adsorbing surface is present in many applications
like nanofiltration or or phase separation. Many
properties of confined water, like in a nanopore,
can be expressed a proportion of adsorbed water
close to the surface with a reduced mobility and
a proportion of water in the confined bulk. The
time evolution can be described by the indicator
function I(t). Where I(t) equals one for equals
one in the adsorbed state and zero in the bulk
state. A example for the behavior of the indicator
function is given in Figure 5. The auto-correlation
function

C(t) = 〈I(t)I(0)〉/ηA (12)

with ηA = τA
τA+τB

characterizes the statistical be-
havior of the dynamics. The values τA and τB are
the average time spent either in the bulk or in
the adsorbed phase before leaving the respectively
state. By describing the adsorption of a molecule
from the bulk, a known approximations for an in-
finite flat surface is used. Further, it is assumed,
that the adsorption and the relocation of molecules
is statistically independent. This leads us to the
Fourier transformation of C(t) given by

F(C)(ω) = J(ω)

=
2τ2

AD/δ
2

(ω/ω0)1/2 + (ω/ω0) + 1/2(ω/ω0)(3/2)
.
(13)

The diffusivity in in the confined bulk is given D
and the starting distance to the surface of a par-
ticle is given by δ. The characteristic frequency
is given by ω0 = δ2/(2Dτ2

A). Additionally the
function J(ω) can be obtained via PFG NMR mea-
surements.
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Figure 5: Indicator function I(t), which describes
whether an atom is adsorbed at the surface
(state A) or unbound in the bulk (state A). The
probability distribution functions ΦA(t) and
Φb(t) characterize the adsorption of and bulk
relocation. [7]

The computation of J(ω) from direct correlations
for the simulated system shows, that the theoreti-
cal expression (13) hold, if the first two layers of
water are defined as the adsorbed domain.
These approach defines an independent adsorp-
tion region in exchange with the bulk flow in
a confined liquid. Furthermore, properties like
τA, which quantify the the interaction between
adsorbed phase and confined bulk, can be ob-
tained. Furthermore, the statistical behavior for
long times can be expressed by the analytical so-
lution, while simulations for long times are very
expensive due to computational resources.

2.6 Free Volume Theory

Another behavior of diffusion can be studied in
ultra-confining media with strong adsorption.
An example for such a kind of diffusion are
alkane mixtures in in a model of kerogen [10],
visualized in Figure 6. The theory of recovering
hydrocarbons from such a ultra-confining and
disordered porosity like in shale gas is basis of
hydraulic fracturing.
In such an ultra-confining media, cross-
correlations between different adsorbed
molecules are negligible due to the strong
interaction with the medium. As a consequence
the collective diffusivity can be estimated from
the self diffusion as Dc ≈ Ds. The free volume

Figure 6: Mixture of of methane, propane and hexane
(yellow, blue and pink) confined in kerogen
(gray red and white bounds)[10].

theory provides the expression

Ds = Ds,0e
−αNValk

Vfree (14)

for a pure aklane of N molecules with the vol-
ume Valk. The available Volume Vfree and the self-
diffusivity Ds,0 of an isolated molecule contribute
to the expression. The coefficient α quantifies the
overlap between different molecules. This coeffi-
cient is only dependent of the fluid type and the
surface of the medium. Consequently one factor α
is sufficient to describe the multi-component case.
For component i with the self-diffusivity Di

s,0 of
the mixture results the diffusion coefficient

Di
s = Di

s,0e
−αVmix

Vfree , (15)

where Vmix is the the volume taken by the mix-
ture. The agreement with simulations of confined
alkanes is shown in Figure 7.

3 Diffusion on a pore Network
Scale

3.1 Hierarchical Porosity

For the description of diffusion on a pore net-
work scale, we will deal particularly with hier-
archical structures. These structures consist of
porous structures in different length scales. An ex-
ample are hierarchical silica monoliths (Figure 8)
[6]. Silica monoliths consists of a inter-skeleton
macroscopic porous structure. Additionally the
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Figure 7: Self-diffusivity as a function of the the free
volume fraction for different mixtures of alka-
nes. The solid red line shows the free volume
theory, while the black dashed line shows the
result of a surface diffusion model.[10]

intra-skeleton structure shows to be mesoporous.
In such a structure, one is mostly interested in the
macroscopic properties, especially in the context
of application of such media. It will be shown, that
for the macroscopic diffusion, the dynamics in the
mesopore space is not negligible.
First, we will have a look on experimental data

of the diffusivity of cyclohexane in a hierarchi-
cal structure with poses in multiple length scales.
In Figure 9 the effective diffusivity Deff over a
long range against the relative pressure. One line
shows the properties while increasing the pres-
sure in the system, while the other line shows the
properties while decreasing the pressure in the
system. The long range diffusivity depends on
the relative number of molecules pinter in the in
the macroporous void space and the macroscopic
diffusion coefficient Dinter is given by[6]

Deff ≈ pinterDinter. (16)

In this case, the diffusivity in the mesopores is
small compared to the diffusivity in the marco-
porous void space. The steep increase of the dif-
fusivity, while decreasing the pressure from a rel-
ative pressure of P/P0 = 0.3, can be associated
with fluid pouring out of the mesopores. The con-
nected increase of pinter consequences an increase
in the diffusivity. For a relative pressure relative
pressure of P/P0 = 0.3 the maximal filling in the
mesopores is reached (Θ = 1). Therefore the dif-

Figure 8: Physical reconstruction of hierarchical silica
monoliths. Macropore space and mesopore
space are illustrated separately in the specific
length scale. [15]

fusivity stays constant with increasing pressure.
Investigations of special networks can also lead
to differentiating diffusion properties. For exam-
ple in continuous space of nanopores with larger
pores embedded. In such a media, an increasing
adsorption does not consequently lead to a de-
creasing diffusivity.
Also a diffusion hysteresis can be obtained in hi-
erarchical materials. For special structures, the
hysteresis is much more clear than for the system
shown in Figure 9. Without discussing the explicit
diffusion behavior for different geometries we will
now study a numerical approach to describe the
diffusion in hierarchical structures.

3.2 Random Walks

While dynamics in mesopores can be obtained by
MD simulations, which compute the interaction
between every molecule, involved in the system,
such simulations are not suitable for large systems
due to computational limitations. Consequently
a simulation method is necessary, which does not
require a recalculation interaction between every
molecule in the system. A suitable method is gen-
eralizing the interaction with other particles by
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Figure 9: Effective diffusivity of cyclohexane in a hier-
archical porous medium during adsorption
(triangles) and desorption (circles). The rel-
ative pressure z = P/P0 is defined using
P0 = 6.6kPa [6].

random walk.
Random walk methods are based on the equiva-
lence between the simulated trajectory and the
description of the time evolution of the probabil-
ity density function, given by the Fokker-Planck
equation. The Fokker-Planck-equation, which de-
scribes a particle position distribution P (x, t) =
〈δ[x− x(t)〉 is called the Smoluchowski equation
and reads[5]

∂

∂t
P (x, t) = [−∇A(x) +∇⊗∇B(x)]P (x, t).

(17)

The components of a drift vector are denoted as
A(x), while the components of the diffusion ten-
sor are denoted by the components B(x). This
equation holds for a negligible inertial force. For
systems with a relevant inertial force, the diffu-
sion of the system is described by the Kramers
equation[5]. An analytic solution solution for the
Fokker-Planck equation exists only in simplified
cases like lower dimensional systems or locally
independent drift and diffusion. It can be shown,
that the Smoluchowski equation is equivalent to
the Langevin equation

dx(t)

dt
= A[x(t)] + (2B[x(t)])1/2 ξ(t). (18)

The Langevin equation gives an equation of mo-
tion for a single particle interacting randomly with
the surrounding particles. In this equation of mo-
tion ξ(t) describes a Gaussian white noise with the
properties 〈ξ(t)〉 = 0 and 〈ξi(t)ξj(t)〉 = δijδ(t−t′).

The interaction with other particles is generalized
this term, including the Gaussian white noise. The
Langevin equation (18) for a zero-drift system
with constant diffusion coefficient D is given by

dx(t)

dt
= (2dD)1/2 ξ(t). (19)

The mean square displacement of system de-
scribed via (19) is given by the Einstein equation

〈x2〉 = 2dDt. (20)

The generalization of the interaction with other
particles makes it possible to simulate dynamics
even in large systems. It should be considered,
that molecular effects like the interaction with a
surface can be taken into account by the diffusion
coefficient D. An example of using random walks
in porous media will be given in the following
chapter.

3.2.1 From Interfacial Dynamics to Hierar-
chical Porosity

In this approach, the results of MD simulation
in molecular length space are implemented in
random walk simulations in larger length scales
to finally receive a macroscopic diffusion. The
physical structure of the investigated porous
media is shown in Figure 8.[15]

Detailed information about the interaction be-
tween the liquid and the interface are gained using
MD simulation on an reserved-phase liquid chro-
matography (RPLC) model. These simulations are
limited to a simple structure like a silt or a cylinder.
The interface is given by a long alkyl chains bound
on a silica surface. The liquid phase contains a
mixture of water and organic molecules. These
simulations yield to a diffusion coefficient parallel
and a density to the surface (Figure 10), depen-
dent on the distance to the interacting surface.
In this case an area of ultra fast surface diffusion
can be observed between the surface and the bulk
region (z > 2.5 nm). In this region, the diffusion
coefficient exceeds even the bulk diffusivity.
The effective diffusion coefficient in the mesopore
space can be calculated by simulating a random
walk. The diffusion coefficient, which is inserted
in the equation of motion (19) is obtained by the
previous MD simulation. To enable that, the meso-
pore space between the pore wall and the bulk
region is split into different regions, dependent
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Figure 10: Surface-parallel diffusivity and number den-
sity of a benzene-water mixture in a slit-pore
model.[15]

on their distance to the pore wall. In each voxel,
the average value of the diffusivity and density is
obtained form the MD simulation (Figure 10 and
used for the random walk. The effective mesopore
diffusivity Dmeso is computed from the trajecto-
ries obtained by the random walk simulation. The
calculation of the effective diffusion coefficient in
the mesopores is done using the Einstein equation
(20).
The effective macroscopic diffusion coefficient
Dbed is received similar as Dmeso. For the meso-
porous space the diffusivity Dmeso is obtained,
while for the void macroscopic space, the bulk dif-
fusivity Dbulk obtained form the MD simulations
is assumed. The long time limit for the diffusivity
is attained a lot earlier in this simulation than in
the simulation of Dmeso.
The result of such an approach in shown in Figure
11. The reference line Dmacro represents the the
macroscopic diffusivity, assuming impermeable
mesopore space using passive point-like tracers.
It is shown, that the macroscopic diffusivity is in-
creasing with the density of hydrocarbons in the
mobile phases, which is causing an increase of the
elution strength of the mobile phase. For a low
elution, the effective diffusivity is less than the
value Dmacro. The reason is that many molecules
are trapped in the mesopore with a low diffusivity.
The diffusion through the mesopores causes a rise
of the total diffusion only for for a mobile phase
with a high elution strength caused by ultra fast
surface diffusion in mesopore space.

Figure 11: Effective macroscopic diffusivities for differ-
ent mixtures of alkanes and water in the
hierarchical porosity given by Figure 8. The
dotted line marks the diffusivity assuming
the mesopores as impermeable walls.[15]

4 Conclusion

In this handout, we have analyzed different dif-
fusion behaviors on the single pore length scale.
Like already mentioned in the beginning, complex
systems like they occur in applied systems are
mostly not analytically solvable in general. Depen-
dent on the pore structure as well as interactions
between the pore surface and the mobile phase,
properties of diffusion distinguish fundamentally.
Consequently there is no general way to describe
diffusion in a mesopore length scale. On the meso-
pore scale at least MD simulations can be used to
obtain a distribution for the diffusion in the sys-
tem. The simulated data then, can be related to
known concepts of diffusion.
In contrast to single pores, MD simulation are not
applicable on macroscopic systems. In order to
that numerical investigations on macroscopic sys-
tems require another method to describe the dy-
namics in the system. For example random walks
can give an idea of the dynamics in macroscopic
systems.
By studying hierarchical systems, it is obtained,
that even for diffusion on a macroscopic scale, dif-
fusion effects in mesopores and micropores are
not negligible. This is an important point, espe-
cially if we look at applications of porous media
for example in engineering.
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