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1 Introduction

In contrast to passive Brownian particles, active particles can execute a systematic movement, because
they can take in energy and dissipate the energy in the process of systematic movement [1]. Because
motile bacteria perform such a systematic movement we can describe motile bacteria by assuming
active Brownian particles. But due to their self-propulsion we cannot describe active particles within
equilibrium and they are showing some interesting behaviours such as accumulation and transport
properties.

To describe motile bacteria, section 2 firstly gives an introduction to active Brownian particles and
how to describe the motion of them. Afterwards the mean square displacement will be discussed to
find an effective temperature and describe the active particles within equilibrium. This assumption
is indeed not correct for active particles and will therefore be disproved by discussing some non-
equilibrium effects. In section 3 the fluid is described for the low Reynolds number regime where we
look at the scallop theorem and comparing differences and properties of some flow fields. Section 4 will
point out some biological details about the E. coli bacteria, in particular the run and tumble motion.
Section 5 introduces a numerical simulation setup for simulating bacteria in a microporous channel
and also discussing the results of this simulations.

2 Active Brownian particles

To describe the motion of active Brownian particles in a simple manner we can simply add a self
propelling velocity to the motion of passive Brownian particles. This procedure will be explained in
section 2.1. Afterwards section 2.2 shows the mean square displacement of free active Brownian parti-
cles, which will be used to define an effective temperature. The assumption of an effective temperature
will then be disproved by some non-equilibrium effects in section 2.3.

2.1 Equations of motion

For Brownian particles the equations of motion are described by the Langevin equation [2]

mv̇ = −mγv + F (t) (1)

with the mass m, the velocity v, respectively the acceleration v̇, the friction coefficient γ and a random
force F (t) acting on the particle. The friction coefficient provides a damping due to the collides with
the fluid molecules. In the special case of an overdamped system mγv � mv̇ we can describe the
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motion of a two dimensional passive Brownian particle with the coordinates x and y as well as the
angular ϕ for the orientation of the motion. This leads to the equations

ẋ =
√
2DTWx

ẏ =
√
2DTWy

ϕ̇ =
√
2DRWϕ

(2)

where DT is the translational, DR is the rotational diffusion coefficient and the terms Wx, Wy and Wϕ

are presenting the white noise stochastic processes [3]. The diffusion coefficients are defined by the
Stokes-Einstein relation as

DT =
kBT

6πηR
, DR =

kBT

8πηR3
, (3)

with the radius R, the Boltzmann constant kB, the temperature T and the viscosity of the fluid η.
What we can recognize here is that the translational diffusion scales with the radius ∝ T/R whereas
the rotational diffusion scales with the volume ∝ T/R3.

If we now assume to have active particles instead, the only thing we have to add to equation (2) is
the self-propelled velocity of the active particle. We therefore get


ẋ =

√
2DTWx + v cosϕ(t)

ẏ =
√
2DTWy + v sinϕ(t)

ϕ̇ =
√
2DRWϕ,

(4)

for a two dimensional active Brownian particle in an overdamped system.

2.2 Mean square displacement

In contrast to passive particles, active particles are showing some behaviours we cannot describe by
assuming equilibrium. To verify this statement, this section first take a look at the mean square
displacement (MSD) for active particles and then assuming, that we can describe active particles
within equilibrium states. This is indeed not valid and will be disproved in section 2.3 by pointing out
some non-equilibrium effects.

For passive particles in an overdamped system the MSD is given by

MSD(τ) = 4DTτ (5)

and for the MSD of an active Brownian particle we can assume [4]

MSD(τ) =
[
4DT + 2v2τR

]
τ + 2v2τ2

R

[
e−τ/τR − 1

]
, (6)

with a rotational diffusion time τR which corresponds to a persistence length

L =
v

DR
= vτR. (7)

2



Considering different time regimes we get for equation (6)

MSD =


4DTτ, τ � τR

4DTτ + 2v2τRτ, τ ≈ τR

4DTτ + 2v2τ2, τ � τR

(8)

This behaviour of the MSD is also shown in figure Figure 1 for self-propelled particles with different
velocities v. The passive Brownian particle with v = 0 µms−1 shows a linear behaviour for the whole
time scale. So the motion of the passive particle is always diffusive. But for increasing v one can
recognizes a regime where the MSD scales quadratically with the time τ , which corresponds to the
intermediate time scale in equation (8). In this ballistic regime, the particle is superdiffusive. For large
time scales the active Brownian particles will again be proportional to τ and therefore diffusive. This
is because the rotational diffusion no longer plays a role, better says it leads to a randomization of the
orientation. Due to the particles velocities the MSD is enhanced for longer time scales.

Figure 1: The mean square displacement (MSD) of free active Brownian particles for different velocities [3].
For short time scales the MSD is proportional to τ and the particles motions are diffusive. For intermediate
time scales and velocities greater than 0m s−1 the motion becomes superdiffusive and for large time scales again
diffusive.

Due to the behaviour of the MSD we can define an effective diffusion coefficient

Deff = DT +
1

2
v2τR. (9)

By recalling the Stokes-Einstein relation, it would also be plausible to define a corresponding effective
temperature for our effective diffusion like in equation (3). Therefore we would get

Teff
?
=
γDeff

kB
= T +

γv2τR

2kB
. (10)

and one could ask, if we can describe active particles within equilibrium and this effective temperature.
But as experiments shows, this is not the case for interacting active particles.
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2.3 Non-equilibrium effects

The assumption of an effective temperature would mean that active Brownian particles are in equilib-
rium which is indeed not the case. This section therefore shows some of non-equilibrium behaviours
for active Brownian particles.

One example of breaking those quasi-equilibrium state theory is illustrated in Figure 2. This figure
shows active Brownian particles of different velocities in a single pore with reflective boundaries. Also
there is the position distribution shown for the different velocities underneath the trajectories. While
the passive Brownian particles in figure 2a are distributed homogeneously over the entire pore, the
probability increases towards the boundary if the velocity increases. This is because of the concave
pore shape and the active particles persistence lengths. The active particles will hold their moving
direction for a certain time and if they move against a boundary, they will move along it as long as the
reorientation doesn’t result a directed motion away from the boundary. Thus the position distribution
is non-Boltzmann and therefore the system cannot be described by an effective temperature.

Figure 2: Simulated trajectories and associated position distributions for active Brownian particles of different
velocities in a pore [5].

A similar kind of non-equilibrium effect is shown in Figure 3. The schematic setup in Figure 3a
consists of obstacles in a funnel shape with a gap between the obstacles. This setup will lead to an
increased position distribution on the ride half of the system for active Brownian particles. Passive
Brownian particles instead will be homogeneously distributed due to the equipartition theorem. But
because the self-propelling velocities and the shape of the obstacles, the active particles are more
inclined to trace the gap from the left side, whereas the possibility to trace the gap from the right side
is restricted.

This kind of setup has also been used in an experiment and the results are shown in Figure 3b.
The left side shows the initial setup, where all the active particles are distributed homogeneously over
the whole system. The right side shows the system after a certain time and therefore the density on
the right half is enhanced. This is only caused by the self-propelling of the particles, it didn’t need
any kind of additional force to move the particles there.
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(a) Schematic setup (b) Experimental results

Figure 3: A setup to concentrate active particles. (a) show the schematic setup. The micro-structure uses funnel
walls with a gap which active particles can trace more likely from the left side. (b) shows the experimental
results for this kind of setup. The initial uniform distribution on the left side becomes a steady-state distribution
after 80min, which is shown on the right [6].

3 Hydrodynamics

The motion of fluids can be described by the Navier–Stokes equations. To describe bacteria in a fluid
we consider afterwards the dimensionless Navier-Stokes equations and transfer them into the Stokes
equations by assuming a vanishing Reynolds number.

To describe bacteria in a fluid it is kind of practical to make the Navier–Stokes equations dimen-
sionless. Thereby we get

Re

(
∂u

∂t
+ (u ·∇)u)

)
= ∇2u−∇p+ f (11)

with the Reynolds number Re and the fluid velocity u, as well as the dimensionless pressure p and
outer forces f . The Reynolds number is coming from the non-dimensionalisation of the Navier-Stokes
equations and is defined as the ratio between inertial forces and viscous forces as follows:

Re =
inertial forces
viscous forces

=
ρLv

η
. (12)

If we now assuming to describe bacteria, we can neglect the left term of equation (11), due to
the fact that the Reynolds number is very small. For a bacteria in water we can use for example
ρ = 1000 kgm−3, L ≈ 1 µm, v = 30 µms−1 and η = 1× 10−3 Pa s and get a Reynolds number about
Re ≈ 3× 10−5 � 1 [3]. We can therefore use the simpler Stokes equations{

∇2u−∇p+ f = 0

∇ · u = 0
(13)

and also recognize, that we lost the time evolution we had in the Navier-Stokes equations. This
independence in time makes the motion fully reversible and we can illustrate this by the scallop
theorem. In Figure 4 are shown two states for the scallop movement. At state A the scallop is open
and by performing a quick closing of the shells the scallop is pushed forward and gets into state B. By
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open the two shells very slowly one would assume that the movement backwards is not as much as the
movement forwards. But this is indeed not the fact in the low Reynolds number regime and thus the
scallop cannot generate propulsion by this kind of motion.

Figure 4: The two states of a scallop movement by opening and closing the two shells. In the low Reynolds
number regime the scallop cannot generate propulsion by this kind of motion [7].

By considering the scallop theorem one can wonder how motile bacteria actually are moving,
because we know they do move. One simple example for moving in an low Reynolds number regime
consists of a body and a rotating paddle at the tail. This kind of schematic arrangement is also used
by E. coli and will be discussed in section 4 in more detail.

To analyze the flow field created by a freely swimming bacterium of this type we are looking at
Figure 5. This figure shows the measured average flow field for a freely swimming bacterium and the
streamlines indicates the direction of the fluid flow. The bacterium in the center is swimming to the
right. What we can recognize is, that this flow field is close to stokes dipole in Figure 6 for a pusher.
So in a simple manner we can describe the flow field for a freely swimming pusher bacterium by a force
dipole.

Figure 5: Experimental average flow field for a freely swimming bacterium, the streamlines indicate the flow
direction [8].

In contrast to the Navier-Stokes equations the Stokes equations are linear. We can therefore
describe the flow field by the superposition of singular solutions. If we assume the particles are driven
by external forces, the dominant singularity is the Stokes flow which is generated by a point force and
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showed in Figure 6 left [3]. Figure 6 also shows the dipole singularities. Here the far-field flow for the
Stokes dipoles are represented by two nearby forces pointing in the opposite direction. Figure 6 middle
shows the Stokes dipole for two point forces pointing apart from each other. Therefore it is called
pusher. The point forces for the Stokes dipole on the right pointing against each other, therefore this
dipole is a puller. Both Stokes dipoles moving horizontally.

Figure 6: The flow singularities for the the far field on the left. In the middle the Stokes dipole for a pusher
and on the right the Stokes dipoles for a puller. The Stokes dipoles are representing active particles driven by
an internal force and moving horizontally [3].

4 Biological details

The prime example of a motile bacteria is the E. coli, which is one of the most intensively studied
organism on the planet. As already mentioned in section 3, we can describe them as pushers because
they are moving by rotating the so called flagella at their backside. Normally bacteria could have up
to a few of those flagella. They rotating with rates around 100Hz and they have a helical shape [9].
The motion of the cells basically consists of runs and tumbles. Together they build the so called run
and tumble motion. This motion is described afterwards in more detail.

If the flagella are all bundled together at the tail of the bacterium this leads to a run motion and
the bacterium is moving steadily forwards for a specific time. This type of motion is illustrated by the
schematic drawing in Figure 7 on the left side. The bacterium in this figure would swim to the left.

The other part of the motion is the so called tumble. If one ore more of the flagella are not in the
bundle anymore this will lead to a reorientation of the bacterium. This kind of motion is illustrated
in Figure 7 where all flagella are spread out.

Both parts are alternating to find nutrient in the fluid. Whereas the average tumble times are
relatively short about 0.1 s, the runs are relatively long about 1 s [9]. By alternating those motion parts,
the bacterium can perform a systematical movement. So if the bacterium detects a higher density of
nutrient in the fluid, the probability to re-orientate by performing the tumble motion decreases and
therefore the systematical movement will be more directed to the nutrient. In contrast to this, the
probability for the tumble motion increases if the nutrient density decreases.
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Figure 7: The schematic drawing of the run and tumble motion. Left the run motion, where all flagella are
bundled at the tail of the bacterium and rotating together. On the right side the schematic drawing of the
tumble motion where the flagella are not bundled together and the bacterium can therefore reorientate itself.

5 Numerical application

This section shows an example to simulate bacteria in porous media. First the simulation setup will
be described and afterwards the results are discussed in section 5.2.

5.1 Setup

Figure 8 shows the an example setup for modelling bacteria in porous media. The setup consists of a
channel with a microfluide flow and a cylindrical obstacle inside the channel. Due to this setup a basic
porous media is given, because there are solid boundaries and we have also different velocities in the
fluid stream because of the obstacle inside the channel. For the bacteria this model uses a set of five
rigid collected particles. The reason for using multiple particles aligned to each other, is to put torque
on it. This wouldn’t be able with a single point like particle [10].

The flow direction of the fluid is in the positive x direction. In this direction periodic boundary
conditions are applied such that the swimmer will come in from the left, if it reaches the right boundary
and vice versa. In the other two directions no-slip boundaries are used.

Figure 8: A simulation setup for a fluid-filled channel with an cylindrical obstacle in the center of the channel
and 159 swimmers [11].
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5.2 Results

Some results of the simulations are shown in Figure 9. Here the swimmers distribution is shown for
various external flow inputs. Also the dashed lines are showing regions where the magnitude of the
averaged flow velocity uavg is greater than the magnitude of the swimmer velocity US. In the first case
(upper left figure) there is no flow velocity applied to the fluid. The distribution shows, that there is
a high position probability for the swimmers at the walls of the channel and also around the obstacle.
What one can also observe is that more swimmers are accumulated on the lateral walls than around
the obstacle, which can be explained by the convex shape of the obstacle [11].

By introducing an external flow, the ratio between averaged flow velocity and the swimmer velocity
becomes greater than 0. What we can also see in Figure 9 is that the accumulation for the bacteria
enhances at the downstream side of the obstacle, whereas the accumulation at the upstream side around
the obstacle is reduced.

Another result can be obtained by also looking at the extension of the accumulation regions. With
stronger flow velocities the extension for accumulation mainly at the downstream side of the obstacle
is reduced. This extension reduces with increasing flow strengths and can also be obtained by looking
at the dashed regions where the local flow velocity is higher than the swimmer velocity.

Figure 9: Distribution of the swimmers ρ(x, y), normalized by the homogeneous swimmer distribution ρh for
various external flow inputs [11].

6 Conclusion

To describe the motion of active Brownian particles we can simply add a velocity to the overdamped
Langevin equation. Also we have seen that we can define an effective temperature for the active
Brownian particles, but indeed this assumption is incorrect due to the fact that they are not in
equilibrium.
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Because bacteria live in low Reynolds number regimes we can use the Stokes equations and due to
their linearity use superposition to find solutions and describe the flow fields. By looking at some flow
singularities and comparing them to experimental results we have seen, that the flow field created by
the bacterium in the experiment could be approximated with a Stokes pusher dipole.

In the end we discussed a simulation example which consists of a microporous channel and a cylinder
inside the channel. This setup has solid boundaries and generates different flow zones of different flow
velocities, therefore this setup describes a simple porous media. As a result the distribution shows that
the swimmers prefer to accumulate in regions with lower flow velocities.
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