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1 Introduction

Nowadays, computer simulations have become a standard tool in essentially all fields of chem-
istry, condensed matter physics, and materials science. An accurate description of the atomic
interactions is of vital importance for carrying out reliable computer simulations |12]. The
most prominent approach to describe those interactions are electronic structure methods and
classical force fields. Electronic structure methods like density function theory and coupled
cluster methods deliver excellent accuracy but are limited to small systems of a few hundred
atoms and to timescales of a few picoseconds [5]. Force fields on the other side are capable to
describe larger system for a longer period of time but fail when it comes to a simple description
of bond breaking and phase transitions. In order to keep up with state-of-the-art experiments
and the ever growing complexity of the investigated problems, there is a constantly increasing
need for simulations of more realistic, i.e. larger, model systems with improved accuracy. One
promising approach are machine learned models that can achieve near ab initio accuracy with
a computational complexity O(N) where N is the number of atoms in the system [7]. This
handout shall give a brief overview of the state of the art of machine learned potentials while
also pointing out the difficulties, strengths and limits of the method.

First ,an overview on machine learning will be given followed by a description of the two most
dominant approaches for machine learned potentials (ML-Potentials). After that a closer look
will be taken on the concept of data and data processing. Last but no least limits and future
outlooks on machine learned potentials will be elaborated.



2 Machine Learning

In the most general form machine learning algorithms are algorithms that learn with the data
they are handed. The larger the dataset, the more accurate their statements and predictions
become. Hereby, the field of machine learning splits in three different primary learning models
[6]:

e Supervised Learning
e Unsupervised Learning

o Reinforcement Learning

To create machine learned potentials, one enters the field of supervised learning which itself
can be divided into the area of classification problems and regression problems. Classification
problems are mainly found in image recognition while regression is used to find overall trends
in data such as price prediction or in this case energy predictions. There are several ways of
performing these calculations. In this work, only two of such approaches will be described,
which are Gaussian Process Regression and Neural Networks. The underlying idea of both
methods is the same. They predict an output 7 for an yet unknown input & based on a given
set of n previous observations {(x;,y;)}_; [11]. This set is called training data. In the case of
fitting energy surfaces, the input might be the coordinates of a atomic configuration and the
output is the potential energy of that configuration.

2.1 Gaussian Approximation Potentials

When deriving an energy surface using a Gaussian Process, one speaks of a Gaussian Approx-
imation Potential (GAP). The basic idea of regression is finding a relation between an input
vector & and an output y. For instance a linear relation like S = y. When knowing /3, one can
calculate g for an arbitrary input . In practice this is not so easy since a linear approximation
of the energy surface will not be sufficient. In the nonlinear case the problem is more in finding
similarities between different inputs in order to map them on similar energies. This is done by
a kernel function. There is a wide variety of possible kernel functions. A typical choice is the
Gaussian kernel (or squared exponential kernel) [12]
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k(x,y) = oexp (—HQZQyH2> (1)

o and [ are hyperparameters describing the amplitude and the length scale on which different
inputs correlate. Using the Gaussian Kernel, two vectors that are far from each other will be
mapped on 0 and two input coordinates, that are close to each other will be mapped on 1. This
corresponds to a similarity measurement. Computing all the similarities of input pairs leads to
the kernel matrix [1]

Kij = k:(a:i,xj) (2)

which is for a set of n observations an n x n matrix.

Before coming to the actual Gaussian process, it is now helpful to recap some features of a
multivariant Gaussian distribution [11]. The probability density of such a distribution can be
expressed by

p@) ~exp (50— @S @ - ). )



x is a vector valued stochastic variable, p the mean of this distribution and X! the covari-
ance matrix. To understand a multivariant Gaussian consider the two dimensional case, pic-
tured in Figure [1, The density shown in the middle panel the case, where X! is the identity
matrix and x; and z9 are uncorrelated. In the two other cases, the off diagonal is nonzero
and x; and xo are correlated. One can say that the off diagonal elements describe the cor-
relation between the variables. In the case of a Gaussian Process this covariance matrix is
given by the kernel matrix. Consider now a
sets of observations {(z;, fi) }I;, called train-
ing set and a new input vector x, for which
one is interested in the energy. The distribu-
tion of this energy output can be considered
as a joint distribution of the training set ener-
gies and the new energy. The Gaussian pro- = o E 0 E 0 s
cess now provides a distribution of functions,

that when evaluated at an input of the train- Figure 1: Plot of 10000 samples of a two dimen-
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ing data, give the associated energy output. sional Gaussian distribution for dif-
In addition to that, the mean energy output ferent correlation coeflicients p. Left:
for the new input x, can also be calculated p = —0.8, middle: p = —0 and right:
by first computing the covariance vector us- p=08.

ing the kernel function

kisx = k(x;, x) (4)
and then by

fo=kIK'f. (5)

K is the kernel matrix of the training data. f, is then taken as the energy prediction of an
arbitrary input . and K~ f is in some sense the Gaussian Approximation Potential.[11] It is
important to state here, that first inverting K is an O(n?) operation that is only relevant during
training. The computation of the energy prediction is an O(n) operation but it is important to
emphasize here that n is not the system size but again the training size, that can be significantly
bigger than the system size.

2.2 Neuronal Network Potentials

An alternative approach to GAP are Neuronal Network Potentials (NNPs). They can consist
of one more artificial neuronal networks (NNs). NNs are universal approximators that enable
in principle arbitrary accurate approximation of unknown multidimensional functions based on
a set of known function values.

In principle NNPs can be defined by three aspects [4]:

e They provide direct functional relation between the atomic configuration and the potential
energy.

e They use a set of data obtained from a single electronic structure method.

e They do not contain any approximation apart from the intrinsic limitations of the chosen
electronic structure method.



The underlying concept of an NNP is a neu-
ronal network. In figure [2] such a neuronal
network is shown. The final neuron or node
is the output node and is the final energy. In
the first layer, the input layer, the configura-
tion in form of a coordinate input G = {G;} is
handed to the NN. The number of layer deter-
mines the mathematical flexibility of the net-
work and normally each layer contains ~ 50
nodes. Each node is connected to all nodes
in the following layer by a weight a,ﬁ’j, con-
necting the i*" node of the k" layer with the
4t node of the I*" layer. Additionally each ,
node is connected to a bias node by an ac- \ Bias Node = 1 W
cording bias weight bf that connects the bias
node with the i** node of the k' layer. The
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Figure 2: Schematic structure of a 3-5-5-1 single

value of the node ¢ in layer k is then calculated feed forward NN. The chain of num-
with bers describes how many nodes are in
Ni_1 each layer and characterises the NN.

yk = gk (bf + ) a;?’i—l’k . y;?—1> (6) Goal is to give a functional relation

j=1 between the input vector G and the

o . . .. energy output [4].
which is essentially a linear combination of

the values of nodes of the previous layer plus

the bias. The weights are fitted during the

training. To fit also nonlinear functions (e.g. the PES) a nonlinear activation function fz-]’C is
applied. A typical choice is hyperbolic tangent or sigmoid function as both have a nonlinear
region and approach 1 for large values and either —1 or 0 for negative values. The choice of
activation function should be differentiable with respect to its inputs such that the functional
expression of the energy is differentiable as well. For the NNP shown in figure [2| the energy
written in its closed form is

B R Y R0+ ek (0 a1 6))) Y
k=1 j=1 i=1

In some sense a neural network can therefore simply be interpreted as a function which param-
eters are fitted during training. Still, it is considered a monparametric fitting procedure. This
is due to the fact that the parameters are not associated with fixed energy contributions and
physical relations. During the training the weights are fitted in such a way that a given error
function that compares energy predictions with reference energies, is minimized. In practice
such single feed forward networks are not used. They are not symmetric under permutation of
atoms. To overcome this problem one uses so called high dimensional neural networks. Instead
of calculating the total energy of the system, they focus on the local energy of each atom by
using a single feed forward NN for each individual atom. The total energy is then computed as
the sum of the local energies [4].



3 Data

As previously mentioned, a machine learning algorithm is one that learns with the data it is
handed. The following section gives a brief overview on where that data comes from, how to
reduce the data necessary for teaching an ML algorithm, and most importantly, how to present
the data before handing it to the machine.

In general all data used in an ML process can be expressed as a set of n observations {(x;, y;) }i
which assign an output y; to every input ;. In most cases one differs between the training data
and the test data. As the title suggests the training data is that which the algorithm is trained
on. The test data is then used to make sure the training is sufficient.

3.1 Data Sources

In the case of ML potentials, the data fitted is mostly the result of electronic structure calcu-
lations such as DFT, applied to different configurations of the system of interest. Data from
more complex methods can also be used here, like Hartree-Fock or coupled cluster calculations.
In principal, one could also use Classical Force Field data to fit those. When using data from a
certain structure method, one should stick to that method and not include data from others as
this would influence the fit significantly and would provide bad results. It is often the case that
the configurations are drawn from long and computationally expensive ab-initio MD trajecto-
ries. Another approach is to run a classical MD simulation, draw samples from that and then
use a electronic structure method to calculate the correct energy of those configurations [2].

3.2 Data Selection

The huge amount of computationally expensive data necessary to get reliable results from a
machine learning algorithm is one of the biggest obstacles of ML potentials. Another significant
problem is to make sure that the training data describes configuration space sufficiently. That
means one has to make sure that as many unique atomic environments as possible are contained
in the training data. Although it may sound simple, in practice it might be difficult to decide
whether a given configuration is unique or not. It is also not clear what makes an atomic
environment unique. To find those unique configuration a different number of sampling methods
can be used. Possible methods are for instance [7]:

e a random selection over the full MD trajectory
e a global energy selection, selecting uniformly across the energy values
e an atomic energy selection, sampling configurations uniformly based on atomic energies

« a force selection in which the net force on the " atom is used to indicate a unique
environment.

A comparison of the different approaches is shown in Figure[3] Hereafter different errors of the
resulting MD simulations for data-sets constructed with different sampling methods are shown.
The results suggest that sampling uniformly over the atomic energy distribution leads to more
accurate and robust machine learned potentials than sampling the same amount of training
data from distributions of global properties.
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Figure 3: Comparison of maximum error left, root-mean-square error (RMSE) middle, and the
mean absolute error (MAE) right of force prediction of the same ML model trained
on data-sets sampled with different methods [7].

3.3 Descriptors

One key component of machine learning is the so called sample efficiency, describing how much
data is necessary to train the algorithm sufficiently. The higher the efficiency the less data
is needed for a certain degree of accuracy. As explained in the section before, one way to
improve the sampling efficiency is to select the right training data. Another way is to use the
correct description. A simple example to understand this is when looking at a water molecule.
When representing the positions of the three atoms in Cartesian coordinates an ML algorithm
can learn the energy associated with a certain configuration. When rotating this configuration
around the oxygen atom, the coordinates of the hydrogen atoms will change. Although the
potential of that configuration did not change compared to the previous, an ML potential will
not recognize that configuration as known and therefore predicts it energy output wrongly|3].
One way to overcome this problem is, to include all rotational variances of a configuration in
the training set. This would not be feasible. Another approach is to change the representation
of the data in a way that both of those configurations are represented in the same way. This
is done by using so called descriptors. Further to rotational invariance, there are a handful of
requirements a descriptor has to fulfill.

3.3.1 Requirements

The first and perhaps most obvious criteria for a descriptor is invariance under the fundamental
symmetry transformation (7.), under which the energy is also invariant as well. These are
translation, rotation, reflection and permutation of atoms of the same species. A descriptor
must map different atomic environments onto different representations. This is called uniquness
(7.). Another requirement is being continuous and in the best case differentiable (7i.). Non
continuous descriptors lead to a steep increase of computation power. Using differentiable
descriptors leads to a differentiable potential energy which is necessary to derive forces for a
MD simulation. Although it is not a necessary requirement it is favorable that a descriptor
is computationally efficient (iv.). A crucial requirement is that the resulting structure of the
descriptor should be suitable for regression (v.). Last but not least every local environment
should be encodable in a descriptor. This is feature is called generality (vi.). This means also
that when applying the descriptor to another system, one should not have to build it from
scratch [3].



In practice representations do not satisfy all six requirements and the choice also depends on
the type and amount of data. Often the fulfillment of the above criteria depend on so called
hyperparameters that are specific parameters defining a descriptor.

3.3.2 Descriptor Example

There are two primary strategies to deal with previously introduced invariances. The first one
can use an invariant k-body function like it is done with the symmetry functions method (SF)
and the Coulomb matriz (CM) |14]. The second approach is to explicitly symmetrize a function
as it is done in the many body tensor representation (MBTR) or the smooth overlap of atomic
positions method (SOAP) [10]. Here, only the last of those four will be described further. Ad-
ditional information about the others can be found in the cited sources.

The smooth overlap of atom positions method (SOAP) expands a central atoms local neighbor-
hood density approximated by Gaussian functions located at the position of atoms in orthogonal
radial and spherical harmonics. The, at first, more intuitive approach of describing the density
in terms of delta functions would lead to a non differantiable representation. The spherical
harmonic expansion reads

p(’r) = Z Cnlm gn(r) Y27m(7")~ (8)

n,l,m

The radial harmonics g, can be replaced whith alternative basis functions like Gaussian function
or polynomials. Y} ,, are the spherical harmonics and ¢,, ; ,,, are the expansion coefficients. These
coefficients are now used then used to calculate the power spectrum

Pnn/l = Z Cn,l,m C *nx lm - (9)
m

Alternatively, one can compute the bispectrum as well. Both leads to a representation
invariant under rotation
and permutation. While
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be determined before us- Figure 4: Schematic figure of describing the local environment con-

ing SOAP for computa- taining two different atomic species [10].
tion.

In the end, it is always a question tied to the system of interest, which descriptor is suited best.
The performance of different descriptors depends on the system- and data size and type of data
2.



4 Results

As the ML potential is always a fit of the underlying electronic structure method the reference
for an observable derived from a MD simulation is always the value of that observable calculated
by the associated ab intio MD simulation. A machine learned potential is better, the smaller
the difference between ab initio result and ML-MD is. Since during training the energy is
fitted, it is obvious that the first observable one would compare is the energy and since one
is interested in molecular dynamics the error in forces should also be as small as possible. In
Figure [5] such a plot is shown. One can see that the output of the GAP are in good accordance
with the DFT energies and forces [8]. Besides reproducing the energy correctly, ML potentials
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Figure 5: Plot of the energy and force predictions of a GAP potential compared with the asso-
ciated DFT energies and forces. The data is of a MD simulation of lithium adsorption
in different carbon nano-structures [8]

can also reproduce dynamical quantities, like the conductivity |15] or the phonon dispersion
relation [13]. In Figure [6 one can see a plot of a conductivity computation of NaCl at different
temperatures. Impressive about these results is first their accuracy compared to the experiment
but second, that these result come out of an MD simulation running on an ML potential that
was simply fitted to DFT calculations. No more physics were included when deriving this
observable. Getting theses results would have been possible with a classical force field method
too, but the amount of effort that has got to be put in constructing that force field makes the
ML approach superior.

5 Limitations

One of the biggest obstacles of using machine learning potentials is the amount of data that is
needed to obtain a sufficiently accurate energy surfaces and since in the end they are only a fit
to the results of a electronic structure calculation, they first rely on these methods and second
can, by definition, not lead to better results. While their purely mathematical form allows a
highly flexible fit and is not tied to certain bonding parameters like classical force fields, this
also impedes the interpretation of the model and can sometimes lead to "nonphysical" behavior
when the ML potential is not trained sufficiently on a certain configuration [4]. Extrapolation is
also a big aspect as the reliability of predictions for unknown configurations decreases drastically
[11]. A last and highly debated topic is the assumption that the total energy of the system is
equal to the sums of the atomic energies. There are novel approaches to include electrostatics
but it is controversial if that is sufficient [9].
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Figure 6: Conductivity computation using different theoretical methods. The underlying MD
simulations were carry out using a ML potential. The blue data represent the evalu-
ation with the Nernst Einstein method, the red data the Green Kubo approach. The
gray data are the experimental observations .

6 Outlook

A forth generation of NNPs promise to include also long range interaction and charge transfer
ﬂgﬂ. This is done by using a second high dimensional neuronal network to compute the charges
in the system that are then used to first calculate an electronic energy and second also feed the
charge distribution of the system into the atomic neuronal networks of the short distance energy
evaluation. This charge transfer is especially important for long molecules and their dynamics
as forces on atoms in molecules are responsible of the deformation and bending of the molecule.
Another novel approach to make sure that the training data for neuronal networks contains
a representative sample of the configuration space and that there are no vital configuration
missing, is the so called active learning. One trains several neuronal networks with slightly
different architectures on the same training set. Some of the NNP are then used to perform
MD simulations with. The configurations contained in the resulting trajectory are then passed
to one of the remaining neuronal networks to evaluate the energy at each point. If the energy
values do differ for the creating NNP and the evaluating NNP, one has a clear idea of which
configurations are not represented well enough in the training data [5].

Although the field of machine learned potentials is quite new, it is clear that future MD simu-
lations will rely more and more on such trained potentials and more research has to be done, to
improve sampling efficiency and also inclusion of physical phenomena. A major improvement
would be to reduce the number of unique configurations to an amount that allows the usage of
coupled cluster analysis. As MD simulations will become even more important in the future also
the description of the energy surface will become increasingly important. Machine learned po-
tentials are one approach to close the gap between highly accurate but slow electronic structure
calculations on the one hand and fast but less accurate classical force fields on the other.
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