
Simulation Methods in Physics II

Tutorial 3

Introduction to ESPResSo: Kremer-Grest’s Linear
Polymer Melts

Nadezhda Gribova, Olaf Lenz ∗

May 27, 2011
Institute for Computational Physics, Stuttgart University

Contents

1 Introduction 2

2 Getting started 2

3 Tcl tutorial 3
3.1 Variables, Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Assignments, Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Comparisons, Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Adding new Tcl commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Writing to a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7 Task 1 - Arithmetic average and standard deviation (2 points) . . . . . . . . . . . . . 6

4 Basics of ESPResSo 7
4.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Thermostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.6 Integrating the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.8 Warmup integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 The Kremer-Grest polymer melt 9
5.1 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Task 2 - Kremer-Grest polymer melt (8 points) . . . . . . . . . . . . . . . . . . . . . . 10

∗olenz@icp.uni-stuttgart.de

1



1 Introduction

Today, we will get acquainted with the simulation package ESPResSo. On that behalf, we will be
using a simple model of a linear polymer. The model was first used by Kremer and Grest in 1986[? ]
(their paper can be found in the tutorial’s materials collection) and is nowadays seen as a standard
model for polymers.
Today’s research on Soft Condensed Matter and allied fields has brought needs of having a flexible,

extensible, reliable and efficient (parallel) molecular simulation package. For this reason ESPResSo
(Extensible Simulation Package for Research on Soft matter)1 has been developed at the Max-
Planck-Institute for Polymer Research in Mainz and the Institute for Computationaly Physics at
Stuttgart University in the group of Prof. Dr. Christian Holm [1].
The software is probably the most flexible and extensible simulation package on the market. It

is specially developed for coarse-grained molecular dynamics simulation of polyelectrolytes but not
necessarily limited to this. It can be used even to model granular media, for a example. The package
was nominated for Heinz-Billing Price for Scientific Computing in 2003 [2].
In this short tutorial you will be introduced to the ESPResSo package as smooth as possible with

a minimal set of skills.
From the user’s point of view, ESPResSo is driven by the scripting language Tcl/Tk2. This means

that the user interacts with the parallelized package core (that is written in the C programming
language for optimal performance) via Tcl commands.
Using the software, we will be performing simulations of a Kremer-Grest polymer melt and analyze

different observables.

2 Getting started

The first thing to be done is to find, download and compile the package. To learn how to do that,
have a look at section 2.1 (“Quick installation”) of the User’s Guide of ESPResSo. A hardcopy is
available in the CIP pool, but of course you can also find it in the web.

Comment: If you want to compile ESPResSo on your own computer, make sure that you have
the necessary prerequisites installed. In the CIP pool, these requirements are already installed.

• The scripting language Tcl/Tk. Most Unix distibution provide a package called tcl. Note
that you will also have to install the development package, that is usually called tcl-devel or
similar.

• The parallelization environment MPI (optional, required for parallel execution). A number of
implementations of MPI exist. Use either OpenMPI (packages openmpi and openmpi-devel)
or MPICH2 (mpich and mpich-devel).

• The Fourier transform package FFTW (“Fastest Fourier-transform in the West”) (packages
fftw or fftw3 and fftw-devel or fftw3-devel).

Once you have compiled ESPResSo, you can type in ./Espresso to start the software. It will
print out a short welcome banner and give you a prompt, where you can type in commands. To see
that everything works fine, issue the command code_info, that will give you some information on
the software. After that, you should have roughly the following lines on the screen:

1http://espressomd.org
2http://www.tcl.tk

2

http://espressomd.org
http://www.tcl.tk


> ./Espresso
0: Script directory: /auto.anoa/home/olenz/projects/espresso/obj.icp/default/scripts
*******************************************************
* *
* - ESPResSo - *
* ============ *
* A Parallel Molecular Dynamics Program *
* *
* (c) 2010,2011 *
* The ESPResSo project *
* *
* (c) 2002,2003,2004,2005,2006,2007,2008,2009,2010 *
* Max-Planck-Institute for Polymer Research *
* Mainz, Germany *
* *
*******************************************************

ESPResSo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

ESPResSo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

>code_info
ESPResSo: 3.0.0
{ Compilation status { FFTW } { CONSTRAINTS } { TABULATED } { LENNARD_JONES }

{ BOND_ANGLE_COSINE } }
{ Debug status { } }
>

Congratulations, ESPResSo now runs on your machine!

3 Tcl tutorial

Tcl (Toolkit Command Language) is a dynamically interpreted programming language (aka scripting
language). ESPResSo is an (extended) interpreter for the Tcl language. This means that you can
type commands into your script file (e.g. script.tcl) and execute it via

./Espresso script.tcl

to see what it does.
You can even start ESPResSo without giving it a script name. In that case, ESPResSo will be

started in interactive mode, where you can type your commands on the command line.
If you need help on how to use a Tcl command, you can use the Unix command man. For example,

the following command will give you some help on the Tcl command puts:

man 3tcl puts

3



The 3tcl is required to note that you need help about the Tcl command puts, not the Unix command
of the same name.
If you need further and advanced language details please consult the official Tcl documentation3.

3.1 Variables, Commands

• x is the variable name.

• $x refers to the value of the variable.

• COMMAND parameter1 parameter2 ... calls a function.

• [ COMMAND parameter1 parameter2 ... ] returns the value of the called function.

3.2 Assignments, Evaluation

• Simple text output can be carried out with puts:

puts "Hello Espresso \n"
puts "This is line 1"
puts "this is line 2"

• To assign values to a variable, use the command set:

set X "This is a string"
set Y 1.24
puts $X
puts $Y

• Comments are started with the “#” sign:

set X 1.2 ;# this is a comment

• To obtain the result of an evaluation of mathematical expressions you can use the expr com-
mand. Don’t forget [], since you are interested in the value that the operation returns.

set X 60
set Y 30
set Z [expr $X+$Y]
puts " X=$X and Y=$Y and X+Y=$Z"
set cosX [expr cos($X)]
puts "cos ($X) = $cosX"

Most operators and math functions that you might now from the C language are also valid in
Tcl.

3http://www.tcl.tk

4

http://www.tcl.tk


3.3 Comparisons, Looping

• The syntax of numeric comparison is as follows:

set x 5
if {$x == 5} {

puts "$x is 5"
} else {

puts "$x is not 5"
}

Comment: Mind the spaces between the curled braces, they are important! If you forget the
space, you’ll get error messages about the statement in general.

• To loop, you can use a for loop. For example, to compute 10!, you can use

set factorial 1.0
for {set i 1} {$i <11} {incr i} {

set factorial [expr $factorial*$i]
}
puts "10! is $factorial"

• Also, there is the while loop. Repeating the above example of computing 10!:

set factorial 1.0
set i 1
while {$i <11} {set factorial [expr $factorial*$i] ; incr i}
puts "10! is $factorial"

3.4 Lists

A basic data structure in Tcl is the list. It is an ordered collection of arbitrary objects (e.g. numbers,
strings, other lists, . . . ) and can be stored in a variable.

• A list can be construed like this:

set x { 1 2 3 }
set y "1 2 3"

Note here that a string can also be interpreted as a list! Whitespace characters delimit the
different elements.

• To access the list data one can use lindex by using the corresponding index values:

set x "1 2 3"
puts "first element is [lindex $x 0]"
puts "second element is [lindex $x 1]"
puts "and the last [lindex $x 2]"

• One can access all the elements by using the foreach loop:

foreach j $x {
puts "$j is item number $i in list x"
incr i

}

5



• Also one can access list of lists:

set y "{l00 l01} {l10 l11} {l20 l21}"
puts "first element of second list is [lindex $y 1 1]"
puts "second element of third list is [lindex $y 2 1]"

• We can also find the length of a list by llength, append an element by lappend, or insert an
element by linsert

set x "1 2 3 4"; # generate a list x
llength $x; # get the size of list x (number of elements)
lappend x 5 ;# add a new member end of list
puts "x is {$x}"; # print list again
set x [linsert $x 3 3a]; # insert an element "3a" at index 3
puts "x is {$x}"; # print list again

3.5 Adding new Tcl commands

You can easily add new commands/functions to Tcl like this:

proc sum {arg1 arg2} {
set x [expr {$arg1 + $arg2}]
return $x
}
sum 1 4

3.6 Writing to a file

It is often useful to write the data into a file:

set file_handle [open "file.dat" "w"]; # open a file called file.dat to write,
puts $file_handle "This will go into file!"
for {set i 0} {$i <10} {incr i} { puts $file_handle "counting $i" }
close $file_handle # close the file channel

3.7 Task 1 - Arithmetic average and standard deviation (2 points)

1. (1 point) Write a Tcl commands that computes the arithmetic average

x̄ = 1
N

N∑
i=1

xi

from a given list of real numbers. Use the math function [expr rand()] to produce arbitrary
number of real numbers between 0 and 1 to test your new command. Write your code into a
file called task1.tcl.

2. (1 point) Write a Tcl command that computes the standard uncorrelated deviation into the
same file

σ2 = 1
N

N∑
i=1

(xi − x̄)2

Check your result with a smaller data set where you can verify the correctness manually.

6



4 Basics of ESPResSo

In this section we will review the basic ESPResSo-commands that will help you to understand the
sample script. Note that a real life script may look much more complicated.

4.1 Units

Novice users must understand that ESPResSo uses no fixed unit system. Read subsection 1.4. (On
units) in the ESPResSo User’s Guide to understand what that means.
In the following, we will used Lennard-Jones units, where σ = 1.0 and ε = 1.0.

4.2 Simulation parameters

There are a few global parameters of the whole simulation system. Some of them are dynamic, that
is to say we can change them on the fly, some others can only be read. The main command to address
these parameters is setmd.

setmd time_step 0.001; # this sets integrator’s time step to 0.001
setmd box_length 10.0 10.0 10.0; # this sets cubic box L =10

To obtain the value of a global parameter, you can simply omit the value it should be set to:

puts "The current time step is [setmd time_step]\n"

4.3 Thermostat

By default, ESPResSo simulates an NVE ensemble. However, in soft matter research, one usually
wants to simulate a system in the NVT-ensemble. To do that, it is necessary to turn on a thermostat.
Here, we switch on the Langevin thermostat with a temperature $temperature and friction coefficient
$gamma:

thermostat langevin $temperature $gamma

4.4 Particles

The power of the ESPResSo package lies in the flexibility to manipulate particle data, which is
driven by the part command. Each particle in the system has a unique particle id that can be used
to address the particle. For example, one can obtain information on a specific particle via

part 0 print pos

This command will return the position vector of the particle with id 0.
Besides a position, each particle must have a type, which is specified via the type id. The type is

important to define interactions between all particles of that type (see below). For example to create
particle 0, give it the type 2 and place it at the position (x,y,z) we write:

part 0 pos $x $y $z type 0

To set up a polymer chain, the following command is used:
polymer $num_polymers $monomers_per_chain $bond_length SAW $shield

This command will create $num_polymers polymer chains with $monomers_per_chainmonomers
per chain. The length of the bond between two adjacent monomers will be set up to be $bond_length.
The polymer is generated as a self-avoiding random walk (SAW). Monomers can’t be closer to each
other then $shield. For further details and options consult the ESPResSo User’s Guide, subsection
4.2.1.

7



4.5 Interactions

To define interactions between particle types, one uses the inter command. For example, a LJ
interaction between particles of type 0 can be defined as follows

set lj1_eps 1.0
set lj1_sig 1.0
set lj1_cut 1.12246
set lj1_shift [calc_lj_shift $lj1_sig $lj1_cut]
set lj1_off 0.0
inter 0 0 lennard-jones $lj1_eps $lj1_sig $lj1_cut $lj1_shift $lj1_off

This setting corresponds to the following potential form

U(r) = 4ε
[(

σ

r − off

)12
−
(

σ

r − off

)6
+ shift

]

The command calc_lj_shift calculates the shift of the LJ potential for given sigma and cutting
radius.

4.6 Integrating the system

To integrate the equations of motion, ESPResSo invokes the integrator via the integrate command.
The only argument it needs is the number of time steps to integrate. Most of the basic simulation
parameters must be set before integration.

4.7 Analysis

ESPResSo has a lot of built-in tools for analysis of the system. For example, the command
analyze energy has several variants:

analyze energy
analyze energy total
analyze energy nonbonded $typeid1 $typeid2

It returns the energies of the system. The first variant returns all the contributions to the total
energy. The second variant returns only the numerical value of the total energy. The last variant
computes the energy of the non-bonded interactions.
There are many other analysis functions in ESPResSo. To learn what they do and how they

work, have a look at the User’s Guide.

4.8 Warmup integration

There is one special issue to be considered when the particles are set up randomly. In this case, some
of the particles may overlap, so that they would have extremely high interactions energies. This
energy first has to be removed from the system. To do that, we first have to cap the forces, i.e. we
modify the potential such that it never gets larger than the capping value. Then we can safely start
to integrate the system.
Note that we should not use this setting to compute and analyze the observables, as it is actually

unphysical. Therefore, as soon as we have removed the extreme energies, we should unset the capping
to perform the main integration.

8



5 The Kremer-Grest polymer melt

In the article [3] (that is part of the tutorial’s material), an efficient algorithm for simulating polymers
was proposed. In this MD algorithm each particle is weakly coupled to a heat bath (Langevin
thermostat) to mimic the influence of the solvent on the polymers. The equations of motion are:

r̈j = −∇Ui − Γṙi + Wi(t) (1)

where Ui is potential energy of the bead i, Γ is the bead friction describing the drag of the solvent
on the bead and Wi(t) describes the random kicks of the heat bath acting on the monomer.

5.1 System setup

The potential Ui consists of two parts U0 + U ch. U0 is the contribution of a purely repulsive LJ
potential acting between any two monomers:

U0
ij =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6 + 1
4

]
, rij ≤ σ21/6

0, rij > σ21/6 (2)

The potential

U chij =
{
−0.5kR2

0 ln
[
1− (rij/R0)2] , rij ≤ R0

0, rij > R0
(3)

gives the additional bond interaction only between nearest neighbours in the chain. This potential
is referred in ESPResSo as FENE (finite extension nonlinear expander) and is set up via

inter 0 FENE $fene_k $fene_r

$fene_k and $fene_r correspond to k and R0 in eq. 3.

5.2 Analysis

The Rouse model for the dynamic of a single polymer describes the motion of an ideal chain immersed
in a viscous solvent. The model neglects self-repelling of the chain monomers as well as any hydro-
dynamic effects. For an ideal chain (random walk) of N monomers, one finds the longest relaxation
time (Rouse time) τN ∝ N2. For the motion of a single monomer, the following relations hold:

g1(t) = 〈[rj(t0)− rj(t0 + t)]2〉 ∝
{
t1/2, t� τN
t, t� τN

(4)

g2(t) = 〈([rj(t0)−Rc.m.(t0)]− [rj(t0 + t)−Rc.m(t0 + t)])2〉 ∝
{
t1/2, t� τN
t0, t� τN ,

(5)

where

Rc.m. = 1/N
N∑
i=1

ri

is the center of gravity of the chain. The center-of-mass motion finally follows

g3(t) = 〈[Rc.m(t0)−Rc.m.(t0 + t)]2〉 ∝ t. (6)

At the Rouse time
g1(τN ) ≈ g2(τN ) ≈ g3(τN ) ≈ 〈R2

G(N)〉. (7)
〈R2

G(N)〉 is the mean-square radius of gyration. Qualitatively, eqs. (4)-(6) mean that the monomer
motion is governed by the fluctuation around the center of gravity until the average distance reaches
approximately RG, then the diffusion of the chain as a single object dominates.

9



5.3 Task 2 - Kremer-Grest polymer melt (8 points)

1. Read the article [3].

2. Study the file tutorial3.tcl, which simulates the system studied in [3]. Pay attention to the
warmup integration, how sampling is done, what observables are written out and to which files.

3. (1 point) Look into the User’s Guide (section 8.3) what the command analyze append does.
Why is it used in the script?

4. Run the tutorial script:

./Espresso tutorial3.tcl

5. (3 points) Plot g1, g2, g3. Do they obey the expected scaling given by Equations (4)-(6)? Can
you estimate τN?

6. (4 points) Change the script to simulate non-bonded LJ particles instead of polymer chains. A
rough pattern for assigning initial positions for LJ particles is provided in part Interaction and
Particle setup of the script. For non-bonded particles it does not make sense to use g2 and g3,
since the center of mass of a chain of length is exactly the position of the one bead. To use g1
one has to specify explicitly the chain start (0), the number of chains (n_part) and the length
of each chain (1). For the proper syntax consult the User’s Guide, section 8.2. Compare g1 for
LJ particles with the one of polymer chains. Is there any difference? Where does the difference
come from?

References

[1] HJ Limbach, A. Arnold, and B. Mann. ESPResSo; an extensible simulation package for research
on soft matter systems. Computer Physics Communications, 174(9):704–727, 2006.

[2] A. Arnold, BA Mann, HJ Limbach, and C. Holm. ESPResSo–An Extensible Simulation Package
for Research on Soft Matter Systems. Forschung und wissenschaftliches Rechnen, 63:43–59, 2003.

[3] G.S. Grest and K. Kremer. Molecular dynamics simulation for polymers in the presence of a heat
bath. Physical Review A, 33(5):3628–3631, 1986.

10


	Introduction
	Getting started
	Tcl tutorial
	Variables, Commands
	Assignments, Evaluation
	Comparisons, Looping
	Lists
	Adding new Tcl commands
	Writing to a file
	Task 1 - Arithmetic average and standard deviation (2 points)

	Basics of ESPResSo
	Units
	Simulation parameters
	Thermostat
	Particles
	Interactions
	Integrating the system 
	Analysis 
	Warmup integration

	The Kremer-Grest polymer melt
	System setup
	Analysis
	Task 2 - Kremer-Grest polymer melt (8 points)


