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Abstract

Materials with energy scales on the same order of magnitude as the thermal energy are
considered “soft matter” as opposed to e.g. crystals or metals. Aside from polymers,
gels, foams, liquids, as well as most biological matter, colloidal systems fall within this
category. Colloids are particles whose size range from microns to millimeters, typi-
cally immersed in a solvent. Colloidal systems can be studied efficiently using coarse-
grained computer simulations. In such simulations, the solvent is often modeled as a
continuum using the Navier–Stokes equations.

Due to its non-linearity solving the Navier–Stokes equations is numerically chal-
lenging. An efficient method for solving the Navier–Stokes equations is the lattice-
Boltzmann method. By coupling point-particles to this discrete fluid solver, coarse-
grained soft matter simulations can be accelerated. In realistic suspension the long-
and short-time dynamics of the colloids are well pronounced and differentiable. Usu-
ally the correct long-time behavior is sufficient for studying soft matter, such as poly-
mer mobilities in salty environments, and other material transport properties. But
the short-time dynamics can be important, for example in the crystallization of soft
spheres. It is known that lattice-Boltzmann produces the correct flow field on long-
time and length scales, but can produce unphysical results in the case of dense col-
loidal suspensions, where lattice-Boltzmann produces unphysical short-time dynam-
ics.

For soft matter systems the solvent is assumed to be in the creeping flow limit. This
means that the fluid relaxes many orders of magnitude faster than the structure of the
embedded particles changes. With these limitations, the Navier–Stokes equations can
be simplified and the Stokes equation is obtained. A method to simulate the hydrody-
namic interactions in Stokes flow is Stokesian Dynamics. The solution for the Stokes
equation of two interacting spheres is used to construct the mobility matrix containing
the effective hydrodynamic interactions. The method has been first proposed by Brady
in 1988 [1].

As part of this thesis Stokesian Dynamics has been implemented in ESPResSo for the
use of graphic processing units (GPUs) by taking advantage of the Compute Unified
Device Architecture (CUDA) framework. CUDA allows to use the massively parallel
computing power of Nvidia GPUs. Using this power allows the simulation of a few
thousand particles efficiently.

In order to compare the effects of the hydrodynamic interaction, the hydrodynamic
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function was measured for both lattice-Boltzmann and Stokesian Dynamics. Lattice-
Boltzmann with parameters typically used in the literature shows a discrepancy at
short times, compared to the Stokesian Dynamics results. The Stokesian Dynamics re-
sults are assumed to be more reliable, as Stokes Dynamics is in the creeping flow limit,
which is not the case for lattice-Boltzmann. The fact that lattice-Boltzmann produces
different results, calls into question whether the hydrodynamic interactions produced
with the typically used parameters are physical.

Choosing drastically different parameters, good agreement between lattice-Boltzmann
and Stokesian Dynamics was found for either the mean squared displacement or the
hydrodynamic function. In the case of a low viscosity, the hydrodynamic function
shows good agreement to the Stokesian Dynamics simulation. In this case, the mean
squared displacement at times close to the long-time diffusion still shows ballistic ef-
fects from the fluid. For high viscosities, the mean squared displacement matches bet-
ter, but the hydrodynamic function shows nearly no hydrodynamic interactions. It is
therefore unclear what parameter sets reproduce right physics, or if indeed there exists
a set of parameters which produce both a reasonable mean squared displacement and
hydrodynamic function.
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Zusammenfassung

Stoffe mit Energieskalen in der gleichen Größenordnung wie die thermische Energie,
werden als weiche Materie (soft matter) bezeichnet im Gegensatz zu Kristallen oder
Metallen. Neben Polymeren, Gelen, Schäumen und den meisten biologischen Stoffen
gehören Kolloide in diese Kategorie. Kolloide sind Teilchen deren Größe von Millime-
tern zu Mikrometern liegen und befinden sich typischerweise in einem Lösungsmittel.
Kolloidale Systeme können mit Hilfe von vergröberten (coarse-grained) Computersi-
mulation effektiv studiert werden. In diesen Simulationen wir das Lösungsmittel oft
auf der Kontinuumsebene mit den Navier–Stokes Gleichungen beschreiben.

Aufgrund der nicht-linearität der Navier–Stokes Gleichungen ist es numerisch an-
spruchsvoll sie zu lösen. Eine effektive Methode zur Lösung der Navier–Stokes Glei-
chungen ist die Gitter Boltzmann Methode (lattice-Boltzmann). Durch Kopplung von
Punktteilchen mit dem diskretem Fluid Löser können weiche Materie Simulationen
beschleunigt werden. In realistischen Lösungen kann man zwischen Kurz- und Lang-
zeitverhalten der Kolloide unterscheiden. Zumeist reicht es aus, das korrekte Langzeit-
verhalten der weichen Materie zu simulieren, zum Beispiel wenn die Beweglichkeit
von Polymeren in salziger Flüssigkeit bestimmt wird. Aber auch das Kurzzeitverhal-
ten kann wichtig sein, zum Beispiel wenn man die Kristallisation von weichen Kugeln
betrachtet. Es ist bekannt, dass die Gitter Boltzmann Methode das richtige Fließverhal-
ten berechnet für große Zeit- und Längenskalen. In dichten kolloidalen System kann
es dabei aber zu deutlichen Abweichungen kommen.

Bei weicher Materie wird meist davon ausgegangen, dass das Fluid als schleichende
Strömung beschrieben werden kann. Das ist dann der Fall, wenn die Flüssigkeit um
viele Größenordnungen schneller relaxiert als sich die Struktur der darin eingebette-
ten Kolloide ändert. Mit dieser Annahme können die Navier–Stokes Gleichungen zu
den Stokes Gleichungen vereinfacht werden. Eine Möglichkeit die hydrodynamischen
Wechselwirkungen zu simulieren ist die Stokes’sche Dynamik (Stokesian Dynamics).
Dabei wird die Lösung der Stokes Gleichung für zwei Kugeln verwendet, und damit
eine Mobilitätsmatrix konstruiert, die die effektiven hydrodynamischen Wechselwir-
kungen beinhaltet. Diese Methode wurde zuerst von Brady 1988 vorgeschlagen [1].

Als Teil dieser Masterarbeit wurde diese Methode in ESPResSo unter der Program-
miererweiterung CUDA für Graphikkarten implementiert. Die extrem parallele Rechen-
kapazität erlaubt es dabei Systeme mit einigen tausend Teilchen effizient auf Nvidia
Graphikkarten zu simulieren.
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Um den Einfluss der Hydrodynamik zu bestimmen, wurde die hydrodynamische
Funktion sowohl für die Gitter Boltzmann Methode als auch für die Stokes’sche Dyna-
mik bestimmt. Die Gitter Boltzmann Methode zeigt mit üblichen Parametern aus der
Literatur eine Abweichung auf kurzen Zeiten, verglichen mit den Ergebnissen der Sto-
kes’schen Dynamik. Es wird davon ausgegangen das die Stokes’schen Dynamik Ergeb-
nisse vertrauenswürdiger sind, da die Stokes’sche Dynamik im Stokes Regime arbeitet,
im Gegensatz zur Gitter Boltzmann Methode. Das die Gitter Boltzmann Methode ande-
re Ergebnisse produziert, lässt hinterfragen ob die mit typisch Parameter simulierten
hydrodynamischen Wechselwirkung physikalisch sind.

Durch die Wahl von drastisch anderen Parametern konnten, entweder bei der mitt-
leren quadratische Verschiebung (mean squared displacement) oder bei der hydrody-
namischen Funktion, eine gute Übereinstimmung erziehlt werden. Im Falle von klei-
nen Viskositäten zeigt die hydrodynamische Funktion gute Übereinstimmung, die mitt-
lere quadratische Verschiebung zeigt dagegen bis kurz vor die Langzeitdiffusion noch
ballistisches Verhalten. Für große Viskositäten stimmt die mittlere quadratische Ver-
schiebung gut überein, die hydrodynamische Funktion zeigt aber kaum hydrodynami-
sche Wechselwirkungen. Es ist daher nicht klar, welche Parameter die korrekte Physik
reproduzieren, beziehungsweise, ob es überhaupt Paramter gibt die sowohl die mitt-
lere quadratische Verschiebung als auch die hydrodynamische Funktion angemessen
reproduzieren.
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1 Introduction

The study of soft matter is a subfield of condensed matter. Materials, where the en-
ergies of the dominant processes are of the same order as the thermal energy at room
temperature, are in general considered as soft matter. This is because they can be de-
formed by thermal fluctuation or stresses. Examples for soft matter systems are poly-
mers, liquids, gels, foams, many biological and colloidal systems [2]. Colloidal systems
consist of particles (colloids) in the range 10 nm to 10 µm, which are suspended in a
fluid [3]. There are many colloidal system in our everyday live. Milk, coffee, paint and
blood are examples. In fact, there are many examples of food that are colloidal sys-
tems. The search to improve some aspects of food, for example the stability of foams
like whipped cream, can be done with the help of computer simulation [4, 5, 6].

The static properties of colloidal systems are often dominated by electrostatic in-
teractions. Additional to electrostatics, the repulsion of two colloids due to excluded
volume can be important. If the dynamic properties of a colloidal system are stud-
ied, hydrodynamic interactions are important. All of these forces are easily simulated,
making colloids a popular topic in computer simulations [7, 8, 9, 10, 11].

Extensible Simulation Package for Research on Soft matter (ESPResSo) is an open
source software package with an emphasis on long range interactions [12]. Therefore
this is a great tool to simulate soft matter, where electrostatic interactions and hydro-
dynamic interactions, both long ranged, are important. Additional to the mentioned
long range interactions, it is intended to simulate coarse-grained soft matter systems.
Coarse-grained means that instead of simulating single atoms or molecules, a coarser
view is used, where whole groups of atoms or molecules are treated as a single particle,
sometimes called a superatom. For example colloids can be treated as single particles,
despite being made up of a large number of individual atoms. ESPResSo also supports
thermal fluctuations, which are in soft matter of special importance, as the energies of
the interactions are of similar order as the thermal energy. These particles are naturally
surrounded by a solvent, whose dynamics can be of great importance. Representing
the solvent by atoms or molecules is only practically possible on the nano scale. That
is why the dynamics of a fluid is described at a continuum level. Depending on the
assumptions about the fluid, it can be described with the Navier–Stokes equation or
the Stokes equation. An even faster way to simulate the fluid is the use of a Langevin
thermostat. This ignores advection and only the thermal fluctuations are simulated.

A method for simulating hydrodynamic interaction is the lattice-Boltzmann approach,
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CHAPTER 1. INTRODUCTION

which solves the Navier–Stokes equation [13]. The lattice-Boltzmann approach solves
the discretized Boltzmann equation on a grid. The colloids can be coupled with lattice-
Boltzmann using a point coupling scheme [14]. Although lattice-Boltzmann is much
faster than actually simulating the solvent atoms or molecules, this is computationally
still quite costly. Thanks to the massively parallel computing power of modern graphic
processing units (GPUs), this can be significantly sped up if these parts of the simula-
tion are done on the GPU. The GPU implementation of lattice-Boltzmann in ESPRes-
So has been realized using the Compute Unified Device Architecture (CUDA). CUDA is
framework to write software for Nvidia GPUs.

In this master’s thesis a Stokesian Dynamics [1] implementation in ESPResSo will
be described. Stokesian Dynamics describes the effective interaction on the embed-
ded colloids mediated by a surrounding fluid. Stokesian Dynamics uses the analytical
solution of two spheres in a fluid, and constructs, using these pair mobilities, a mobil-
ity matrix containing all the pair contributions. For the far field of the hydrodynamic
interactions, the Rotne–Prager tensor is used.

In this thesis we focus on the short-time dynamics of the colloids. In order to check
whether or how the difference in the short-time behavior affects e.g. crystallization
of colloids, longer simulation runs are necessary. It was observed that negative eigen-
values in the Rotne–Prager tensor are possible if a cutoff is introduced. The negative
eigenvalues can be avoided if the Ewald summation of the Rotne–Prager tensor is used.
Using the lattice-Boltzmann method, for certain parameters the hydrodynamic func-
tion could be matched with the one obtained by Stokesian Dynamics. With these pa-
rameters, the short-time diffusion was not clearly visible, as the fluid’s ballistic regime
was too long. With other parameters, the short-time diffusion was as expected for
a colloidal system, with these parameters the hydrodynamic functions showed only
small contribution from the hydrodynamic interactions.

After the short introduction in this chapter, the next chapter will give an overview of
the physical models used in this thesis. Chapter 3 will introduce the Stokesian Dynam-
ics method and will also give a short introduction to lattice-Boltzmann in ESPResSo.
The implementation of Stokesian Dynamics in ESPResSo will be shortly described in
chapter 4, where ESPResSo and CUDA will also be introduced. The results of the com-
parison of lattice-Boltzmann and Stokesian Dynamics will be presented in chapter 5.
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2 Models

In colloidal science, long-range interactions of the colloidal particles are of great im-
portance. In sec. 2.1 standard models for short- and long-range interactions will be
introduced. But colloidal particles are always surrounded by a solvent. The hydrody-
namic interactions of particles mediated by the solvent is long-ranged and the evolu-
tion of the fluid can be described at the continuum level by the Navier-Stokes equation.
The Navier-Stokes equation will be introduced in sec. 2.2. In general, colloidal parti-
cles undergo Brownian motion. In colloidal suspension the Reynolds number is very
small. Additionally, the fluid can be assumed to be incompressible. This leads to the
Stokes equation, which will be introduced in sec. 2.2.1.

2.1 Colloidal systems

Colloidal systems consist of mesoscopic particles ranging in size between 10 nm and
10 µm suspended in a fluid [15, 16]. Examples for such systems are blood, smoke or
paint. In this thesis, only spherical colloids in a fluid suspension will be discussed.
Several interactions of different physical origin are usually present in colloidal suspen-
sions.

Excluded volume is modeled by a potential which prevents the different colloids from
overlapping. This is often done with a Weeks-Chandler-Andersen (WCA) potential [17]

VWCA(r ) =
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σ
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�12
−
�

σ
r

�6
�

+ε r < 2
1
6σ

0 else
(2.1)

Where σ is the length scale of the potential and ε the energy scale. The soft WCA po-
tential is an approximation to the hard sphere potential. There it is strictly forbidden
for two spheres to overlap:

VHS(r ) =

(

∞ r < a

0 else
(2.2)
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Figure 2.1: Plot of the WCA- and hard sphere (HS) potential.

Fig. 2.1 shows a sketch of both the WCA and the hard sphere potential. In MD simu-
lations the WCA-potential is computational much more efficient than the hard sphere
potential. In the case of molecular dynamics elastic collisions have to be implemented
in order to handle hard spheres. This is computationally, however, not as efficient as a
softer WCA potential. Therefore in MD simulations typically the WCA potential is used.

Electrostatic interactions often play an important role. The colloids studied in this
thesis are charged. Additionally, there are always salt ions and/or polar solvent molecules
present that screen the interaction between the colloids.

The Bjerrum length l B is a length scale which is related to the interaction strength.
It depends on the relative permittivity εr and the thermal energy k B T . Additional the
unity charge e and the absolute permittivity ε0 are used to define the Bjerrum length:

l B =
e 2

4πε0εr k B T
(2.3)

Another length scale is the Debye-Hückel screening length λD . This length scale
measures how far the influence of the electrostatic interactions reaches. This length
depends on the number densities n i and the valencies z i of the salt ions:

λ−1
D = κD =

r

4πl B

∑

i

n i z 2
i (2.4)
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CHAPTER 2. MODELS

Starting with the description via the Poisson-Boltzmann equation, it can be shown
that the screened electrostatic interaction can be described sufficiently with the Yukawa
potential [18, 19]

V (r ) = l B k B T qi qj
e−κD r

r
(2.5)

where qi is the effective charge of particle i in units of the elementary charge e . qi is a
dimensionless number.

The temperature is given as T and k B is the Boltzmann constant. The thermody-
namic properties of a Yukawa system can be characterized by two dimensionless pa-
rameters [20]

κ=
rw s

λd
(2.6)

Γ=
q 2e 2

4πε0rw s k B T
=

q 2l B

rw s
(2.7)

with the Wigner–Seitz radius rw s = ( 3
4
πn )1/3 as the unit of length. The number density

n is the number of Yukawa particles per volume fraction.

Van der Waals forces are due to the induced dipole moments of the colloids. The
dipole induced in a neutral atom by an external dipole decays as r−3, the instanta-
neous dipole–induced dipole forces decay as r−6 and are therefore short ranged. This
is an attractive force and therefore the main cause of aggregation in colloidal systems.
However, aggregation is often not wanted, as it causes the colloids to sediment to the
bottom of the solution. . One possibility to prevent aggregation, is to use charged col-
loidal particles. As they all have a charge of the same sign, they repel each other. This
leads to a stabilization of the suspension. An alternative approach is to cover the par-
ticles with polymers, which leads to a loss in entropy if two colloids touch each other
[21].

Colloidal systems are often used as a model system to study atomistic processes,
yielding the advantage that the colloids are larger and can be observed using confo-
cal microscopy. Interactions between these particles can be tuned by, for example,
changing the salt concentration of the solvent. The hydrodynamic interactions be-
tween the colloids might change the dynamics of the system. This is a disadvantage, as
an atomistic system has no solvent and this can change the dynamics. The timescales
of crystallization are assumed to be much larger than the timescale on which hydro-
dynamic interactions are important. The influence of the hydrodynamics is therefore
often neglected in simulations, as it is computationally cheaper. In such simulations,
it is assumed that the dynamics of the solvent enter via an effective friction and can

David Schwörer Rotne–Prager based hydrodynamics on GPUs 5



CHAPTER 2. MODELS

Table 2.1: Various parameters for different radii a of the colloidal particles. τc is the
sound propagation time, τB the relaxation time due to Brownian motion.
τη the viscous relaxation time and τI the structure relaxation time. Values
are given for typical parameters of an aqueous suspension of polystyrene
spheres, with colloidal particle density ρc ≈ ρ f and a fluid density of ρ f =
0.9982 g/cm3, a shear viscosity of η = 0.01002 g/cm s, fluid sound velocity
cs = 1.48 · 103 m/s and temperature T = 293 K. Description and table taken
from [23].

a [nm] 1 10 100

τc [s] 6.76 ·10−13 6.76 ·10−12 6.76 ·10−11

τB [s] 2.2 ·10−11 2.2 ·10−9 2.2 ·10−7

∆R2(τB )
1/2
/a 1.9 ·10−3 5.9 ·10−4 1.9 ·10−4

τη[s] 9.9 ·10−11 9.9 ·10−9 9.9 ·10−7

τI [s] 4.7 ·10−6 4.7 ·10−3 4.7

τI /τB 2.1 ·105 2.1 ·106 2.1 ·107

be scaled out. But recent results show that crystallization of colloids is affected by hy-
drodynamic interactions [18, 22]. Hence, investigating the short-time dynamics might
explain the influence of hydrodynamics interactions on the ordering process. Table 2.1
gives an overview of the timescales of colloidal systems.

2.2 Hydrodynamics

Hydrodynamics is understood as a continuum description of fluids [24]. Therefore
the molecular degrees of freedom are not taken into account. The interactions of the
solvent atoms or molecules can be converted to an effective bulk and shear viscosity.
Also, instead of using the velocities of the molecules themselves, a macroscopic fluid
velocity u (~r ) is used to describe the average of the molecular velocities at a location ~r .
This description lacks the thermal motion of the molecules, which can be included as
thermal fluctuation. The Navier–Stokes equation [24, 15]

ρ

�

∂ ~u

∂ t
+ ~u ·∇~u

�

=−∇p +η4~u +(ξ+
1

3
η)∇ (∇· ~u )+ ~f (2.8)

can be used to describe the motion of a fluid. The left side is the total time derivative of
an arbitrary test volume of the moving fluid. The right hand side consist of the forces
acting on the fluid. Thereby the first term is due to the pressure p of the fluid. The body
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CHAPTER 2. MODELS

force ~f can be any external force acting on the fluid. η is the dynamic viscosity and ξ
is often called bulk viscosity. This equation can be used for most kinds of uncharged
fluids. Relativistic effects are not taken into account. It is only valid for sufficently
large length scales, meaning of many particles, when the structure due to layering has
decayed.

2.2.1 At low Reynolds numbers

For the systems discussed in this work, the fluid can be treated as incompressible, since
aqueous solutions can be treated as incompressible in most cases. Exceptions exist,
such as the study of sound waves or resonance effects, but such effects should not play
a large role in colloidal systems. This means that if a specific amount of fluid flows into
a test volume, the same amount has to flow out. The fluid is divergence free:

∇· ~u = 0 (2.9)

Additionally, it can be assumed that the fluid relaxes faster than any other observed
quantity. This results in a pseudo-static flow field. In other words, the time derivative
on the left side of eq. (2.8) is negligible. The result is the time independent Stokes
equation:

0=−∇p +η4~u + ~f (2.10)

This limit is known as Stokes flow or creeping-flow limit. Although eq. (2.10) looks
much easier than eq. (2.8), it has to be solved with eq. (2.9) as a constraint. This cou-
pling makes the Stokes equation challenging to solve. The analytical solution of the
flow field ~u (~r ) around a single sphere moving with velocity ~v is [15]

~u (~r ) =
�

3

4

a

r
(I+ r̂ r̂ )+

1

4

a 3

r 3
(I−3r̂ r̂ )

�

· ~v (2.11)

where a is the radius of the sphere and r is the distance from the center of the sphere.
r̂ = ~r /r denotes the unit vector in the radial direction. The flow field is symmetric in
the sense that the magnitude of the flow field does not depend on whether a point is
in front of the sphere or behind the sphere. For higher Reynolds number this is not
the case, as behind obstacles vortices can appear. The first term decays as 1

r
and is

dominant at larger distances. The second one is a quadrupole term and decays as 1
r 3

and is short ranged. The drag ~F on a sphere with radius a is given by [15]

~F = 6πηa ~v (2.12)
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2.2.2 Lubrication

Lubrication describes the fact that two solids can slide past each other if there is an
extremly thin film of liquid between them. Extremly thin means here that the surface
is much larger than thickness of the film. This is common, for example, in the kitchen
when a wet chopping board slides over the countertop. One can also easily notice, that
it is quite hard to pull the chopping board up, as it seems to stick. This is due to the
thin distance between those two plates. It is for the fluid difficult to flow out, as the
area through which it can flow out is very small [25].

In the context of this work, lubrication is if two colloids are very close. Then as in
the case of the plates, the mobility in the direction of the vector connecting there cen-
ters is strongly reduced, while the motion orthogonal to that direction is still possible.
This lubrication is not included in the Rotne–Prager tensor, and has to be added as a
correction, if the colloids can get very close.
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3 Methods

In this chapter the methods to describe hydrodynamic interactions used in this the-
sis will be discussed. We begin with Stokesian Dynamics in section 3.1. In the here
discussed version, the thermalization is not straight forward. A scheme to realize the
correct fluctuations is described in section 3.2. Although lattice-Boltzmann is much
like Stokesian Dynamics, a method to calculate the hydrodynamic interactions, there
are some important differences. They will be discussed in section 3.3 where the lattice-
Boltzmann method will be briefly introduced.

In order to study the colloidal system, and in specific to compare and discuss the
lattice-Boltzmann and Stokesian Dynamics method, we need observables to describe
our system. The measured observables are introduced in section 3.4.

3.1 Stokesian Dynamics

The Stokesian Dynamics is an approach similar to molecular dynamics which was pro-
posed by Brady and Bossis in ref. [1]. Ermak proposed earlier to use the Rotne–Prager
tensor to include hydrodynamic interactions, but the lubrication correction was later
proposed by Brady [26]. To take care of the hydrodynamic interactions, the analytical
solution of two spheres in Stokes flow is taken. As the Stokes equation is linear, the
analytical solution for the two sphere mobilities can be added to get the many body
solution, consisting of pair interactions.

The hydrodynamic interaction is taken into account by computing a mobility matrix
M which implicitly incorporates the hydrodynamic interaction. In the presence of
external forces F e the displacement∆x is obtained with [26]

∆x =M · F e∆t +k B T∇·M∆t +
p

2k B TM∆t ·Ψ (3.1)

or in explicit form

∆x i =
∑

j

Mi j F e
j ∆t +

∑

j

k B T
∂Mi j

∂ x j
∆t +

∑

j

p

2k B TM∆t i jΨj (3.2)

where ~Ψ is a Gaussian random variable with unit variance and zero mean. k B T is the
thermal energy and∆t is the time step. The term containing ~Ψmust fulfill the fluctua-
tion dissipation theorem. Therefore the square root of the mobility matrix is needed to

9



CHAPTER 3. METHODS

fulfill this relation. This fluctuation dissipation theorem is discussed in more detail in
sec. 3.1.3. In colloidal systems, in addition to inter-particle forces and hydrodynamic
interactions, thermal fluctuations have to be taken into account. This is incorporate as
the random contribution in equation (3.1).

3.1.1 Far field

For the far field approximation the Rotne Prager–tensor or the Oseen tensor is com-
monly used. The Oseen tensor is given by [27]

Mi j =

(

1
8πηr

�

I+ r̂i j r̂i j

�

if i 6= j
1

6πηa
I if i = j

(3.3)

where ~ri j is the distance vector between particle i and j . Again ri j = |~ri j | is the length
and r̂i j = ~ri j /ri j is the direction of the vector. η is the viscosity and a the hydrodynamic
radius. The self term is the solution of a sphere in Stokes flow [28]. The interaction
between spheres is taken in the limit of two interacting point like spheres. Thereby
only the 1

r
term in equation (2.11) is taken. The force that the flow produces on another

sphere gives the interparticle contribution of the Oseen tensor.
The Rotne–Prager tensor is given by [29]:

Mi j =







1
6πηa

�

3a
4r

�

I+ r̂i j r̂i j

�

+ 1
2

�

a
r

�3 �
I−3r̂i j r̂i j

�

�

if i 6= j
1

6πηa
I if i = j

(3.4)

The self interaction is again the solution of a single sphere in Stokes flow. The in-
terparticle contribution includes higher moments resulting from the finite size of the
spheres. The solution is obtained by computing the drag a sphere with radius a would
feel in the flow field of a single sphere, see eq. (2.11). This neglects that the flow field is
changed by the presence of the other sphere. The Rotne–Prager tensor includes the fi-
nite radius of the colloids, whereas the Oseen tensor is only valid for point like colloids.

An advantage of both the Rotne–Prager and the Oseen tensor is the vanishing diver-
gence [30]:

∇·M=
∂Mi j

∂ x j
= 0 (3.5)

This reduces equation (3.1) to

∆x =M · F e∆t +
p

2k B TM∆t ·Ψ (3.6)
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3.1.2 Lubrication Correction

As two spherical particles get close to each other and finally touch, the mobility ap-
proaches 0 for some modes. The Oseen tensor is correct up to O

�

1
r

�

, while the Rotne–

Prager tensor is up to O
�

1
r 3

�

. It is possible to take higher order corrections into ac-
count. In order to capture the vanishing eigenvalues of the mobility, an infinite num-
ber of terms is needed.

This interaction can be dealt with more efficiently in the resistance formulation. The
resistance is the inverse of the mobility, and describes how much force is needed to
move a colloid, while the mobility describes what the velocities are given a specific
force. The analytical solution for two spheres in stokes flow which are close to contact
is known [31]. One must take care to subtract the far field part, which was already
added in the mobility formulation, to not double count the far field part in the case of
the lubrication correction. The two sphere far field mobility is inverted.

M2b , f f =
1

6πηa

�

I M12

M21 I

�

(3.7)

with

M12 =M21 =
�

3a

4r

�

I+ r̂i j r̂i j

�

+
1

2

�a

r

�3
�

I−3r̂i j r̂i j

�

�

(3.8)

Without loss of generality, r̂ can be chosen as ê1:

M12 =
3a

4r







2 0 0
0 1 0
0 0 1






+

1

2

�a

x

�3







−2 0 0
0 1 0
0 0 1






(3.9)

=







α 0 0
0 β 0
0 0 β






(3.10)

with

α=
3a

2r
−
�a

r

�3

(3.11)

β =
3a

4r
+

1

2

�a

r

�3

(3.12)
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using this abbreviation the two body far field mobility can be written as:

M2b , f f =
1

6πηa



















I







α 0 0
0 β 0
0 0 β













α 0 0
0 β 0
0 0 β






I



















(3.13)

�

M2b , f f
�−1
= 6πηa























− 1
α2−1

0 0 α
α2−1

0 0

0 − 1
β2−1

0 0 β

β2−1
0

0 0 − 1
β2−1

0 0 β

β2−1
α

α2−1
0 0 − 1

α2−1
0 0

0 β

β2−1
0 0 − 1

β2−1
0

0 0 β

β2−1
0 0 − 1

β2−1























(3.14)

= 6πηa

�

αs r̂ r̂ +βs I αm r̂ r̂ +βm I
αm r̂ r̂ +βm I αs r̂ r̂ +βs I

�

(3.15)

with

αs =
1

1−α2
−

1

1−β 2
(3.16)

=
4 r 6

4 r 6−9 a 2 r 4+12 a 4 r 2−4 a 6
−βs (3.17)

βs =
1

1−β 2
(3.18)

=
16 r 6

16 r 6−9 a 2 r 4−12 a 4 r 2−4 a 6
(3.19)

αm =
α

α2−1
−

β

β 2−1
(3.20)

=−
6 a r 5−4 a 3 r 3

4 r 6−9 a 2 r 4+12 a 4 r 2−4 a 6
−βm (3.21)

βm =
β

β 2−1
(3.22)

=−
12 a r 5+8 a 3 r 3

16 r 6−9 a 2 r 4−12 a 4 r 2−4 a 6
(3.23)

Equation (3.15) describes the resistance which is already incorporated in the far field.
The lubrication correction Rl c is the analytical two body interaction in the near field
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Rl u b minus the part which was incorporated in the far field R2b , f f =
�

M2b , f f
�−1

Rl c =Rl u b −R2b , f f (3.24)

3.1.3 Thermalization

To simulate a system at a given temperature, thermal fluctuations have to be added.
They have to be related to the dissipation. This can be derived by the fluctuation-
dissipation theorem [32]:

σ2 = 2γk B T (3.25)

whereσ is the strength of the fluctuating force, γ is the friction of the dissipation force
and k B T the thermal energy. Or in words, the square of the strength of the fluctua-
tion forces have to be proportional to the friction. For a given friction, it is therefore
required that the strength of the fluctuations are proportional to the square root of the
friction. To get from the strength of the forces to the actual forces, a Gaussian random
variable Ψ is needed. Instead of the Brownian forces F B , the Brownian displacements
∆x B are calculated, they are

∆x B =M F B =M
p
Rk B TΨ (3.26)

=M
p

M−1k B TΨ=MM− 1
2 k B TΨ (3.27)

=
p
Mk B TΨ (3.28)

Therefore in the Stokesian Dynamics, a square root of the mobility matrix is needed.
This can be done with the Cholesky decomposition of the matrix. The Cholesky de-
composition is an O (N 3) algorithm to compute a square root of a positive definite,
symmetric matrix. In the case that the lubrication correction is added by inverting the
matrices, this is obtained automatically as a byproduct of the matrix inversion. If the
matrix inversion is avoided by using an iterative solver, it is not straight forward to get
the correct thermal fluctuations without the O (N 3) scaling [33].

3.1.4 Ewald summation

A cutoff of the slow decaying hydrodynamic interactions can lead to negative eigen-
values of the mobility matrix, as shown in section 5.1. Negative eigenvalues can cause
serious problems. They violate e.g. thermodynamic laws, as they gain both potential
and kinetic energy by moving to unfavorable positions in the energy landscape. Most
simulations have a repulsive force to prevent particles from overlapping. In the case of
negative eigenvalues, this force can result in the opposite of what it was intended for.
The particles move closer together instead of moving further apart.
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In addition to the problems regarding the physics of the system, this can also lead
to the simulation crashing. In the case of a symmetric, positive definite matrix, special
algorithms can be used for the matrix inversion. If the matrix has negative eigenvalues,
this algorithm fails. Further more, the thermalization breaks down, as the Brownian
displacements are proportional to the square root of the mobility matrix. If this matrix
contains negative eigenvalues, there is no real matrix that fulfills the requirements of a
root, and expanding the displacements to the complex space is certainly not physical.

For non-periodic systems it is straight forward to assert that no cutoff is taken if the
sum is taken over all particles. In the case that we want to study a bulk system, we
need periodic boundary conditions (PBCs) to simulate this efficiently. Without PBC
most particles are on the wall. For example, for a box of 10× 10× 10 particles, 48.8 %
of the particles are on the outer shell. So huge particle numbers are needed, or else the
boundary effects dominate. PBCs are used in basically all simulations for bulk prop-
erties. With PBCs it is impossible to directly sum over all hydrodynamic interacting
particles without a cutoff, as there is an infinite number of periodic images. Even if a
large cutoff is taken, negative eigenvalues can appear.

Using the Ewald summation of the Rotne–Prager tensor, as derived by Beenakker in
ref. [34], the negatives eigenvalues vanish. The Ewald summation also uses a cutoff,
but the terms in the Ewald sum decay fast, and therefore the error is negligible. The
Ewald summation is constructed such that all terms contain an exponential function
or a complementary error function as factor, which results in the fast decay.

6πη∆~x j =
�

1−6π−
1
2ξa +

40

4
π−

1
2ξ3a 3

�

· ~Fj

+
∑

l
~Ri l0 6=~R j l

N
∑

i=0

Mreal(~Ri l 0 − ~R j l ) · ~Fi

+V −1
∑

λ
~kλ 6=0

N
∑

i=1

Mk(~kλ) · ~Fi cos
�

~kλ · (~Ri − ~R j )
�

(3.29)
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with

Mreal(~r ) = I
��

3

4

a

r
+

1

2

a

r

3
�

erfc(ξr )

+
�

4ξ7a 3r 4+3ξ3a r 2−20ξ5a 3r 2−
9

2
ξa +14ξ3a 3+ξ

a 3

r 2

�

π−
1
2 exp(−ξ2r 2)

�

+ r̂ r̂

��

3

4

a

r
−

3

2

a

r

3
�

erfc(ξr )

+
�

−4ξ7a 3r 4−3ξ3a r 2+16ξ5a 3r 2+
3

2
ξa −2ξ3a 3−3ξ

a 3

r 2

�

π−
1
2 exp(−ξ2r 2)

�

(3.30)

Mk(~k ) =
�

1− k̂ k̂
�

�

a −
1

3
a 3k 2

�

�

1+
1

4

k

ξ

2

+
1

8

k

ξ

4
�

6πk−2 exp

�

−
1

4

k

ξ

2
�

(3.31)

The given real-space contribution was implemented as a dense matrix:

6πηMreal
i j =

�

1−6π−
1
2ξa +

40

4
π−

1
2ξ3a 3

�

δi j

+
∑

l
Ri l0 6=R j l

N
∑

i=0

M real(Ri l 0 −R j l ) (3.32)

It would be straight forward to change the real space contribution to a sparse matrix.
However, as the Fourier-space contribution is the time consuming part, this would not
significantly speed up the simulation.

A direct summation of the Fourier-space yields an O (N 2nλ) scaling where nλ is the

number of Fourier-space contributions. If the optimal Ewald scaling of O
�

N
3
2

�

[35]
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wants to be achieved, the Fourier-part of equation (3.29) has to be rewritten:

6πηV∆~x k
j =

∑

λ
~kλ 6=0

N
∑

i=1

Mk
�

~kλ
�

· ~Fi cos
�

~kλ · (~Ri − ~R j )
�

(3.33)

=
∑

λ
~kλ 6=0

N
∑

i=1

Mk
�

~kλ
�

· ~Fi

�

cos
�

~kλ · ~Ri

�

cos
�

~kλ · ~R j

�

+ sin
�

~kλ · ~Ri

�

sin
�

~kλ · ~R j

��

(3.34)

=
∑

λ
~kλ 6=0

Mk
�

~kλ
�

·
�

 

N
∑

i=1

~Fi cos
�

~kλ · ~Ri

�

!

cos
�

~kλ · ~R j

�

+

 

N
∑

i=1

~Fi sin
�

~kλ · ~Ri

�

!

sin
�

~kλ · ~R j

�

�

(3.35)

=
∑

λ
~kλ 6=0

�

Mk
�

~kλ
�

·

 

N
∑

i=1

~Fi cos
�

~kλ · ~Ri

�

!

cos
�

~kλ · ~R j

�

+Mk
�

~kλ
�

·

 

N
∑

i=1

~Fi sin
�

~kλ · ~Ri

�

!

sin
�

~kλ · ~R j

�

�

(3.36)

Now we can pull out the sum over the particles and put this in a separate computing
kernel:

Scos
λ =Mk

�

~kλ
�

·

 

N
∑

i=1

~Fi cos
�

~kλ · ~Ri

�

!

(3.37)

Ssin
λ =Mk

�

~kλ
�

·

 

N
∑

i=1

~Fi sin
�

~kλ · ~Ri

�

!

(3.38)

Using this precomputed values, we can write the Fourier-space contribution in a com-
putationally more efficient way:

6πηV∆~x k
j =

∑

λ
~kλ 6=0

Ssin
λ sin

�

~kλ · ~Ri

�

+Scos
λ cos

�

~kλ · ~Ri

�

(3.39)

With this the scaling is O (Nλmax). This allows us to compute the matrix vector product
without actually computing the matrix.

3.1.5 Avoiding the matrix inversion

In the Stokesian Dynamics the displacements are calculated using the far field con-
tribution M f f of the mobility, and a short ranged lubrication correction Rn f in the
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resistance notation [1]. These two contribution to the mobility have to be added by
summing both contribution in the resistance notation. This is comparable to electri-
cal conductivity, where resistances of a circuit are additive.

The inverse of the total mobility is the total resistanceR [1]

M =R−1 (3.40)

R =Rn f +R f f =Rn f +
�

M f f
�−1

(3.41)

M =R−1 =
�

Rn f +
�

M f f
�−1
�−1

(3.42)

=
�

M f f Rn f + I
�−1

M f f (3.43)

The equation (3.43) has the advantage that only one inversion is needed. As we want
to avoid an analytic inversion, this has to be replaced by an iterative solver.

To solve the inversion iteratively, I implemented and tested different solvers, namely
GMRes and BiCGStab. The Matrix M f f Rn f + I is not positive definite and symmetric.
Therefore the CG Algorithm cannot be used. I noticed that BiCGStab sometimes failed
to solve the iterative systems. It is known that BiCGStab can fail to solve linear systems,
which is known as breakdown [36]. GMRes performed well and succeeded in solving
the iterative system more reliably.

Single floating point precision was often not enough to succeed, instead double
floating point precision had to be used. Using the compile time switch SD_USE_FLOAT
it is however possible to switch between double and single precision.

3.2 Matrix free thermalization of Stokesian Dynamics

The thermalization of the Stokesian Dynamics without matrix inversion has been a
challenge. Reference [33] describes a possible way to do this. The authors note that
this is quite slow. But as the scaling of this algorithm is better than O (N 3), for large
particle numbers, this approach outperforms the traditional approach with the full
matrix inversion.

In this approach, instead of computing directly the Brownian displacements, the
Brownian random forces are computed. The Brownian displacements have to be pro-
portional to the square root of the total mobility matrix. As in the here described ap-
proach, the costly matrix inversion is avoided. This has the side effect that the mobility
matrix is not known, and neither is the square root of the mobility matrix. The expec-
tation value of the square of the Brownian forces F B is proportional to the resistance
matrix, and not like the displacements to the mobility matrix [33]:

~F B (t ) = 0 (3.44)

~F B (t )~F B (t ′) = 2Tδt ,t ′R (3.45)
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The over-line denotes the statistical average. Using eq. (3.41) this can be rewritten as

~F B (t )~F B (t ′) = 2Tδt ,t ′

�

�

M f f
�−1
+Rn f

�

(3.46)

It is possible to split the random forces in a contribution from the near and one from
the far field. This is the reason why the forces are used and not the displacements. To
write the forces explicitly down, a Gaussian random variable Ψ with unit variance is
used. The Brownian forces are given by [33]

~F B (t ) =
p

2T∆tR · ~Ψ (3.47)

~F B (t ) =
p

2T∆t Rn f · ~Ψn f +
p

2T∆t R f f · ~Ψ f f (3.48)

If ~Ψn f and ~Ψ f f are uncorrelated, then the cross terms vanish in the averages and eq. (3.45)
is fulfilled. This allows us to find for both contributions separately a way to compute
a square root of the resistance contribution. It would not be possible to do this in the
mobility notation, as the resistances, but not the mobilities are additive.

In order to obtain the Brownian displacements, the computed random forces are
taken and equation (3.6) is solved again iteratively for the Brownian displacements.

It is favorable to solve for the random and deterministic displacements separately,
as for the deterministic part a good approximation for the inverse is given with the last
computed displacements. This leads to a fast convergence of the iterative solver. The
Brownian displacements have to be uncorrelated from time step to time step. It is not
feasible to use the last displacement as the starting vector for the iterative solver, as
this is only advantageous if the old solution is close to the new solution.

3.2.1 Far field

As mentioned, the Brownian force can be split into a contribution from the far field and
one from the lubrication correction. Here a method is discussed to find the Brownian
forces from the far field F B , f f without the need to actually compute the square root of
the matrix. The forces have to fulfill:

~F B , f f (t ) =
p

2T∆t R f f · ~Ψ f f (3.49)

In order to avoid the explicit calculation of
p

R f f a polynomial approximation is used.
This has the advantage that the matrix R f f or its inverse M f f doesn’t need to be known.
It is sufficient to be able to compute its action on a given vector.

It would be an advantage to compute directly the approximation of 1/
p

x = x−
1
2 to

get directly the forces. In order to find a Taylor series of the function x−
1
2 , the range of

the eigenvalues needs to be known. Due to the singularity at x = 0, the convergence
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radius r of the Taylor series at x0 is limited to r = x0. Why the eigenvalues of the ma-
trix M f f are needed can be shown if the matrix is decomposed into the sum of the
normalized eigenvectors v̂i and eigenvalues λi :

M f f =
∑

i

λi v̂i v̂i (3.50)

where the tensor product is implied. The Taylor series of a function f (x ) at x0 is

f (x )≈
∑

j

c j (x −x0)j (3.51)

with the coefficients c j :

c j =
∂ j

∂ x j
f (x )

�

�

�

�

x=x0

(3.52)

Plugging M f f in (3.51) as x and then using the decomposition (3.50), this results in

f
�

M f f
�

≈
∑

j

c j

 

∑

i

(λi v̂i v̂i )−x0I

!j

(3.53)

as different eigenvectors are orthogonal v̂i v̂ j =δi j , this is equal to

f
�

M f f
�

≈
∑

i

v̂i v̂i

∑

j

c j (λi −x0)j (3.54)

Having the Taylor series of the matrix rewritten like this it is obvious that the series has
to converge for all eigenvalues, in order for the series of the matrix to converge. The
Taylor series is not well suited due to the singular character of the inverse square root.
Especially for eigenvalue close to 0, the series converges slowly.

Instead the Chebyshev polynomial is used. With Chebyshev polynomials every piece-
wise smooth and continuous function can be approximated in the range of [−1 : 1]
[37]. Again, as in the case of the Taylor series, the eigenvalues have to be in the spe-
cific range that the approximation converges. As not all eigenvalues necessarily are in
this range, the function x−

1
2 has to be transformed so that the eigenvalues of the trans-

formed function are in this range. To do so, the eigenvalues have to be known. To be
specific, only the smallest and largest eigenvalue have to be computed. This is done
with arpack-ng, a Fortran library, capable of computing the eigenvalues. It does not
require a matrix or a function which it calls, instead it gives return codes. These codes
tell the calling program what to do, e.g. to compute a matrix vector product, where the
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vector is provided by arpack-ng. This makes it possible to have the matrix on the GPU
and compute the Fourier-part of the matrix without having it stored as a matrix.

Arpack-ng can compute the smallest or largest eigenvalue, not only in magnitude,
but also the largest or smallest real eigenvalue and the same for imaginary ones. For
the use in Stokesian Dynamics, it is sufficient to compute only the smallest and largest
in magnitude. At this point it should also be checked whether we have negative eigen-
values. The eigenvalues with the smallest and largest real value have been computed.

The eigenvalues of the far field mobility are not computed in every step, as it is ex-
pected that they do not change much between subsequent time steps. Also the exact
values are not necessary, the range is a little larger then the true range, so that the ap-
proximation also converges if the range of the eigenvalues changes a bit. This has the
disadvantage that for the approximation at the same accuracy a higher order is needed,
but this is faster than to recompute the eigenvalues range often.

The Chebyshev polynomials Ti are defined recursively [38]:

T0(x ) = 1 (3.55a)

T1(x ) = x (3.55b)

Tn+1(x ) = 2x Tn (x )−Tn−1(x ) (3.55c)

To get the coefficients a i for the function f (z ) = z−
1
2 in the range [λmin : λmax], the

argument z → x of the function has to be linear transformed from [λmin : λmax]→ [−1 :
1]. This results in:

a i =
1

n i

∫ +1

−1

Ti (x ) f
�

2x
λmax−λmin

− λmax+λmin

2

�

p

1−x 2
dx (3.56)

n i =

∫ +1

−1

Ti (x )Ti (x )
p

1−x 2
dx =

(

π i = 0
π
2

else
(3.57)

This integral can be efficiently computed with the Chebyshev–Gauss quadrature [39]:

∫ +1

−1

f (x )
p

1−x 2
dx ≈

n
∑

i=1

π

n
f

�

cos

�

2i −1

2n
π

��

(3.58)

The approximation of the square root of the matrix is then given by:

1
p

M f f
=

∞
∑

i=0

a i Ti

�

M f f
�

(3.59)
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With the Chebyshev polynomials:

T0

�

M f f
�

= I (3.60)

T1

�

M f f
�

=
2

λmax−λmin
M f f −

λmax+λmin

λmax−λmin
I (3.61)

Tn+1

�

M f f
�

=
�

4

λmax−λmin
M f f −2

λmax+λmin

λmax−λmin
I
�

Tn

�

M f f
�

−Tn−1

�

M f f
�

(3.62)

Instead of summing to ∞ a cutoff Nc is introduced. The cutoff is determined when
we compute the coefficients. Much more coefficients are computed as are used in the
approximation. Then the sum of the absolute values of all computed coefficients is
computed. It is then checked how many coefficients are needed to achieve the given
accuracy. We can than express the random forces as a Chebyshev polynomial approxi-
mation:

F B , f f ≈
Nc
∑

i=0

a i Ti (M f f ) ·Ψ f f (3.63)

Instead of calculating the matrix-matrix product, only matrix-vector multiplications
are used. To check whether the current approximation still fulfills the desired accuracy,
the error can be approximated [33]:

Echeby =
F B , f f ·M f f · F B , f f −Ψ f f ·Ψ f f

Ψ f f ·Ψ f f
(3.64)

Echeby is a relative error, so it can be compared with the desired accuracy. If necessary,
the eigenvalues and the Brownian forces are recomputed.

3.2.2 Near field

The approach used for the far field is not suitable for the near field, as some of the
eigenvalues are zero if some particles are several colloid radii apart. In contrast, touch-
ing particles may have very large entries.

In the near field, the resistance matrix is directly composed of single contributions
of the pair-resistances [1]:

Rn f =
∑′

i<j

Rn f
i ,j (3.65)

The ′ in the sum indicates that only close particles have to be summed over. Instead of
computing the square root of the total near field resistance Rn f , the square roots of the
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pair resistances Rn f
i ,j are computed. As this matrix is small and contains only 36 entries

the Cholesky decomposition can be used to calculate the square root. As noted earlier,
the Cholesky decomposition is an algorithm to find a square root of a positive definite
and symmetric matrix, its scaling is O (N 3) [40], but as we only have a small matrix, this
is not a problem. This yields for the Brownian near field forces [33]

F B ,n f =
∑′

i<j

q

Rn f
i ,j Ψ

n f
i j (3.66)

Ψn f
i j have to be uncorrelated for different pairs i , j .

3.2.3 Far field only

In the case that the lubrication is neglected, instead of the forces, directly the displace-
ments can be calculated. This avoids the use of an iterative solver.

The implementation is straight forward, if in (3.56) instead of f (z ) = 1/
p

z the in-
verse f (z ) =

p
z is used, directly the displacements are obtained using (3.63).

To check whether the eigenvalues are still accurate enough for the approximation,
the error can be estimated with

Echeby =

�

�

�

�

Ψ ·M f f ·Ψ−∆x B ·∆x B

Ψ ·M f f ·Ψ

�

�

�

�

(3.67)

So the advantage of a far field only implementation is not only due to the the fact
that the near field does not have to be computed and that the matrix inversion can be
avoided, but in addition we can directly compute the displacements instead of com-
puting the Brownian forces first.

3.3 Lattice-Boltzmann

This is only a very short introduction to lattice-Boltzmann. There are many good re-
view papers about lattice-Boltzmann, for example [41, 42, 43] and also many books
[44, 45]. The lattice-Boltzmann method is a solver for the Navier–Stokes equations.
Instead of modeling the continuous properties and directly trying to solve the Navier–
Stokes equations, the Boltzmann equation is modeled. Not only space and time are
discretized, but also velocities are discretized [46]. The different lattice-Boltzmann im-
plementation are typically characterized by the number of spatial dimensions d and
number of discrete velocities q per spatial node. This is typically abbreviated as Dd Qq .
The model used in ESPResSo is D3Q19. The velocities are sketched in fig. 3.1. Lattice-
Boltzmann simulates the density functions f (~r , ~v , t ) for each velocity ~v at every node
~r at time t .
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Figure 3.1: The 19 velocity vectors of the D3Q19 model. The discrete velocities are
those pointing to the nearest and next nearest neighbors. Graphic taken
from ref. [47].

The lattice-Boltzmann method consists of two steps. A streaming step and a relax-
ation step. In the streaming step the velocities are propagated according to there di-
rection. Thereby the velocity modes are propagated to the corresponding nearest or
next nearest neighbor. In the collision step, the velocities on a node relax a bit towards
equilibrium

f (~r , ~u , t +∆t ) = (1−λ) f (~r , ~u , t )+λ f e q (~r , ~u , t ) (3.68)

where λ describes how fast it relaxes as f e q is the Maxwell–Boltzmann equilibrium dis-
tribution. This is a rather simple version of lattice-Boltzmann, and the implementation
in ESPResSo uses a multi relaxation time scheme (MRT) where different modes relax
with different relaxation times, which leads to a more realistic dynamics [48]. With
help of the Chapman-Enskog expansion it can be shown that hydrodynamic interac-
tions are correctly modeled for long-time and length scales [13].

3.3.1 Viscosity

The viscosity in lattice-Boltzmann is not a freely selectable parameter. The lattice-
Boltzmann parameter which is closely linked to the dynamic viscosity is the relaxation
time of the shear viscosity modes [13]:

η=
ρc 2

sτ

2

2+λ
λ
=
ρτ

6a 2

�

2

λ
+1

�

(3.69)
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with

λ=
τ

τλ
(3.70)

Thereby τ is the time step and τλ is the relaxation time of the viscous modes. This
limits the viscosity for a given grid spacing and time step to

η>
ρτ

6a 2
(3.71)

For the typical values discussed in this thesis, this is not a limitation. λ is a measure
how much the viscous modes relax within a time step. This means that at least 1/λ time
steps are needed such that the fluid is relaxed. Note that lattice-Boltzmann reproduces
the Navier–Stokes equation for long-time and length scales [13].

A naive requirement for the timescales are therefore t > τλ. Although this is cer-
tainly not sufficient for all cases, in most cases this should be a valid requirement. As
momentum is propagated with the speed of sound, this means for the length scales l t ,
that they should be larger than L > csτλ or

l t >
a

λ
(3.72)

Due to the point coupling scheme, if a dense suspension of particles is simulated, the
distance between two particles might be on average about one grid length. It is not
possible that a > a

λ
, because 1

λ
has to be smaller than one. One should take care that

the box length L satisfies the inequality L > a
λ

. If this is not the case, then the hydro-
dynamic interactions only barely depend on the distance between two particles, as the
momentum mode is not relaxed when it interacts again with the particle that caused
the momentum. If the characteristic feature of the decay as 1/r is not given but instead
a constant interaction, it cannot be expected that the right results are obtained.

3.3.2 Speed of Sound

Another difference is that lattice-Boltzmann has a finite speed of sound cs =
Æ

1
3

a
τ

,
where a is the grid spacing and τ the time step [13]. This means that the physical
quantity cs is defined by two non-physical properties. We are interested in the regime
of a very high speed of sound, as this is the Stokes regime. In Stokesian Dynamics this
is approximated by an infinite speed of sound. In lattice-Boltzmann this can be repro-
duced as the grid spacing goes to infinity or the time step goes to zero. The maximal
grid spacing is limited by the distance of the particles. If several particles are in the
same lattice-Boltzmann cell, it cannot be expected that the hydrodynamic interaction
between those is well approximated. Therefore the maximal grid spacing a is limited
by the particle density. The time step can be made smaller, this leads to an increase of
the computation time, as more steps are needed to evolve the system by the same total
time.
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3.3.3 Particle coupling

There are two well studied ways to couple a MD simulation with lattice-Boltzmann
[32]. The one proposed by Ladd, is to add a boundary which can move[49]. In the other
approach, proposed by Ahlrichs and Dünweg, the particles exchange momentum with
the fluid at the point where the particles are located [14]. This is also called the point
coupling scheme. The friction γ controls the strength of the momentum transfer be-
tween the fluid and the particles. This produces an effective hydrodynamic radius

rh =
1

6π
�

η

γ
+ g

a

� (3.73)

where η is the viscosity of the fluid [32]. The numerical constant g depends on the
box size and increases for larger boxes. For a cubic box of size L = 16a the constant is
g ≈ 0.036 [50]. Together with the grid constant a , this is a numerical artefact arising
from the grid of the fluid solver. This means that the maximal hydrodynamic radius is
limited to

rh ≤
a

6πg
≈ 1.5a (3.74)

3.3.4 Over-damped motion

Stokesian Dynamics is typically simulated as an over-damped system. This means that
particle velocities are neglected, and the forces result directly in displacements. This
is a justified approximation, as in such systems the time τB , in which the velocity auto
correlation function decays is much shorter than the time τI over which the configura-
tion changes, see table 2.1. The timestep of the simulation is larger than the time over
which the velocities change. As we are not interested in this short-time behavior of the
system, this motion can be neglected. In lattice-Boltzmann the velocities are needed,
as they are important for fluid coupling. In order to still simulate the right physical
system, it has to be assured that the system reaches short-time diffusion, before the
inter-particle interactions become dominant. Therefore it is not sufficient to choose a
small time step, also the friction γ has to be large enough.

3.3.5 Lubrication Correction

It is known that the near field of the lattice-Boltzmann methods do not correctly mimic
the short ranged hydrodynamic interaction. There are methods to add a near field cor-
rection [51]. This is similar to the lubrication correction in the Stokesian Dynamics.
But in lattice-Boltzmann there is no analytical expression for the hydrodynamic inter-
action between two close particles. It is not possible to subtract from the near field the
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already computed interaction. Although it is possible to add a lubrication correction
in lattice-Boltzmann, there are still many implementations without this correction.

3.4 Oberservables

In order to compare the different methods, some observables are needed to measure
the behavior of the system. I calculated the mean square displacement, its deriva-
tive and the time dependent self diffusion function. Further I calculated the structure
factor, a static quantity describing the spatial distribution of the particles. Finally, I
measured the hydrodynamic function. This quantity describes the influence of hydro-
dynamic interactions.

3.4.1 Mean Square Displacement

The mean square displacement (MSD) describes how far a particle has traveled on av-
erage within a certain time. The MSD W (t )

W (t ) =
1

2d

1

N

N
∑

i=1

�

ri (0)− ri (t )
�2 (3.75)

depends on the time t , the number of dimensions d and N is the number of particles
[52, 23]. The MSD contains in a typical colloidal systems three parts:

• for short-times we have the ballistic regime. In this regime the MSD grows like
t 2. This is only valid for times smaller than the decay time of the velocity auto-
correlation function. In the case of an over-damped integrator, here Stokesian
or Brownian Dynamics, this regime is not simulated. In the case of the Langevin
thermostat or the lattice-Boltzmann, this is the timescale τ< 1

γ
if the friction γ is

sufficiently high.

• for intermediate times we find a short-time diffusion. This is where the particles
diffuse, as their momentum is negligible, and they wander due to Brownian mo-
tion. On these time and length scales, the interaction between the particles do
not matter. This is because this is the timescale before they feel a force due to
a neighboring particle, e.g. by colliding with it. In this regime the MSD is linear
and it’s expectation value is given by

W (t ) =Ds t

Ds is the short-time diffusion constant. If the solution is dense and the particles
have a long ballistic regime, the short-time diffusion might not exist. Then be-
tween the ballistic regime and the longtime diffusion, no further diffusive part
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exists. This would be the case if the viscosity is small. The short-time diffusion is
also called self-diffusion.

• for times larger than the timescale of the short-time diffusion, the long-time dif-
fusion is reached. Again the MSD grows linearly:

W (t ) =Dl t

On this timescale the interactions matter, because these are the timescales in
which the particles see their neighbors and feel the forces constraining them,
preventing them from diffusing freely. Due to this interaction the long-time dif-
fusion is smaller than the short-time diffusion [23]

Dl <Ds

This inequality is also valid if an attractive interaction acts on the particles. In
the case of no interaction, the short and long-time diffusion would be the same.

3.4.2 Time dependent self diffusion function

In order to examine the regimes of the mean square displacement, the time dependent
self diffusion function is introduced. To be specific, there are two versions, one being
the time derivative of W (t ) [23]

D(t ) =
d

dt
W (t ) (3.76)

and another where the mean square displacement is divided by the time [23]

D(t ) =
1

t
W (t ) (3.77)

Both definitions give the same result in the long-time limit D l = D(t →∞) = D(t →
∞). As D(t ) is a local quantity because it doesn’t average over previous changes, this
quantity will be used within this thesis.

3.4.3 Wave-vector dependent diffusion

The Wave-vector dependent diffusion (or k -dependent diffusion) is a measure for the
time on which density fluctuations relax on a specific length scale.

The k -vector dependent diffusion is calculated using the structure factor S(k ). This
is the Fourier transformation of the radial distribution function g (r ) [23]

S(k ) = 1+n

∫

�

g (r )−1
�

e i~k ·~r dr 3 (3.78)
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The radial distribution function measures the probability to find in a certain distance
r other particles compared to the average density. In the case of an ideal gas g (r ) = 1 is
constant, as the particles don’t have any interaction. For perfect crystals the structure
factor is a periodic function and for liquids this function converges to one, in the limit
of large k values.

To calculate the k -vector dependent diffusion, the autocorrelation function (ACF)
S(k , t ) of the structure factor is computed. S(k , t ) is the spatial Fourier transform of the
van Hove function G (r, t ) [53]:

S(k , t ) =

∫

G (r, t )exp
�

−i~k ·~r
�

d~r (3.79)

The ACF S(k , t ) decays exponentially with an on k dependent time τACF(k ). τACF(k )
time gives finally the time dependent diffusion [23]

D(k ) =−
1

q 2

∂

∂ t
log(S(k , t )) =−

1

q 2

1

τACF
(3.80)

D(k ) depends also on the time, whether the derivative is taken in the short time or
in the long-time diffusion limit. This is because the ACF of the structure factor is in
general a multi-exponential decaying function. This is also shown in sec. 5.2.2. In
order to measure the derivative, a fit with an exponential decaying function of the form
a exp(−bτ)with b = 1/τACF the inverse of the decay time.

3.4.4 Hydrodynamic function

The hydrodynamic function H (k ) contains the effects of the hydrodynamic interaction
on short-time scales [23, 54]. The Hydrodynamic function is given by [23]:

H (k ) =
1

N

N
∑

i ,j=1

k̂ ·Di j (~RN ) · k̂ exp(i k (Ri −R j )) (3.81)

This form has the disadvantage that the diffusion tensor needs to be known for a given
configuration. Therefore in a lattice-Boltzmann simulation this can not be used to
calculate the hydrodynamic function.

In the case of Brownian dynamics, Di j (~RN ) is a diagonal matrix

Di j (~RN ) =δi j DI (3.82)

putting this in equation (3.81) results in a constant function H (k ), as the direction of
k̂ does not matter because Di j ∝ I and ri − rj is always zero if the diffusion tensor Di j
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does not vanish. Although in the case of a Langevin thermostat the diffusion tensor is
not explicitly known, the hydrodynamic function is a constant.

Another way to compute H (k ) is using the k -vector dependent diffusion [23]

H (k ) =D(k )S(k ) (3.83)

This has the advantage that the diffusion matrix D does not need to be known. Only in
the case of Brownian Dynamics or Stokesian Dynamics is the short-time diffusion ma-
trix known. In order to compare the hydrodynamic interactions of lattice-Boltzmann
and Stokesian Dynamics it is necessary to use this formulation.

For low k values the hydrodynamic function describes the collective behavior. The
longtime collective diffusion can be measured e.g. by macroscopic diffusion experi-
ments [23].

On the other hand, for high k values the single particle dynamics is visible. H (k )
converges in this regime to the single particle diffusion:

lim
k→∞

H (k ) =D (3.84)

Therefore it is also common to define the hydrodynamic function H̃ (k ) normalized by
the single particle diffusion:

H̃ (k ) =
H (k )

D
=

H (k )
H (k∞)

(3.85)

with k∞ a sufficiently large Fourier-space vector.
If the normalized hydrodynamic function H̃ (k ) is larger than 1, the dynamics on the

length scale corresponding to this k -vector is accelerated by hydrodynamics. If it is
lower than 1, the dynamics with hydrodynamic interactions is retarded compared to
the case without hydrodynamic interactions. As this makes it easier to compare the
effect of hydrodynamic interaction between different systems, this is can be advanta-
geous. Due to the normalization, the function lacks the information of the short-time
diffusion, as the function always converges to 1 for sufficiently large k -vectors.
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4 Implementation

The target of the implementation was to simulate larger numbers of particles, than it
would be possible with the matrix inversion based implementation described by Brady
[1]. Instead of the P3M-like approach described by Sierou and Brady, an Ewald sum-
mation was used [55]. This was chosen due to the limited time of a master’s thesis. The
thermalization was done in the way proposed by Banchio et al. [33]. The implemen-
tation is written in CUDA, so that it can use the massive parallel computing power of
modern graphic cards. First CUDA and some features of graphic cards in general will
be described in section 4.1. In the section 4.2 the simulation package ESPResSo will
be introduced. The implementation of Stokesian Dynamics in ESPResSo using CUDA
will be described in section 4.3.

4.1 CUDA

The Compute Unified Device Architecture (CUDA) is Nvidia’s set of software tools to
make it easier to write general purpose code for graphic cards [46]. It is an extension to
the C/C++ language with specific features for graphic cards.

The idea of using GPUs not only for computing images but for arbitrary calculations
is not new. In the beginning of general–purpose computing on graphics processing
units (GPGPU), the GPU had to be used as if it would actually calculate an image [56].
Thereby only the instruction for image manipulation supported by the GPU could be
used for solving other numerical equations. In the mean time this has much improved.
It is now possible to write C/C++ or Fortran code using CUDA.

Another way is OpenACC or OpenMP. Both standards define pragmas, enabling the
compiler to compile code for an accelerator like the GPU. This has the advantage that
only a single code has to be maintained which can run one different hardware. Also
some of the optimizations of the code for running on a GPU can also speed up the ex-
ecution on a central processing unit (CPU). OpenMP supports accelerators like GPUs
starting with version 4.0. At the time of the writing of this thesis, the GNU compiler
GCC is still working on the support of accelerators [57]. It supports OpenMP 4.0 — ex-
cept the support for GPUs. The clang compiler of the LLVM suite is still further behind
in the support of OpenMP [58, 59].
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4.1.1 Kernels

In CUDA the functions or subroutines running on the GPU are called kernels. These
kernels are called and configured from the CPU, which is also called host. Typically
many kernels are executed simultaneously to use the parallel computing power of
GPUs. They are grouped in blocks and the blocks in a grid. Each thread executes the
same kernel. Each thread has some variables predefined. threadIdx is a predefined
variable. It is a 3 component vector and assigns each thread within a block a unique
number. AdditionalblockIdx assigns each block a unique 3-component vector within
the grid. Thereby every thread can be easily assigned its part of the computational task.

A block is internally grouped into warps, consisting of 32 threads. Within a thread the
threads are all executed synchronously in parallel. If a block consists of more than one
warp, synchronous execution is not guaranteed. Due to the fact that all threads within
a warp are executed in parallel, similar to a vector processor, it is disadvantageous to
have conditional statements. This only matters if they evaluate differently for different
threads in a warp. In such a case the different branches have to execute sequentially
while the other threads are waiting.

In order to execute a kernel on the GPU, some parameters have to be set. For ex-
ample the number of threads or blocks have to be set. It is possible to change the
block size, depending on the current problem size. This is important for optimal per-
formance. Additional to the block and grid size, the cache size can be configured or the
size of the shared memory per block can be configured. CUDA supports streams. With
streams, different kernels can be executed in parallel, if they are in different streams.
This can also be configured at the kernel call time. If two kernels are in the same
stream, they are executed serialized. This is important if one kernel depends on the
data of another kernel.

4.1.2 Hardware features

In order to achieve good performance on a GPU, it is necessary to take care of the spe-
cific properties of graphic cards. GPUs are designed for maximal throughput. In con-
trast, CPUs are designed for minimal latency. As shown in figure 4.1 a GPU devotes less
transistors to caches and control units than a CPU. Therefore different cores cannot
execute independent instructions. A streaming multiprocessor (SMX) is responsible
for controlling the cores. The multiprocessor is also responsible for the registers. The
registers are not associated with a single core but with the multiprocessor. This is one
of the reasons why it is fast to switch between threads [61]. It is favorable to switch
between threads in the case that the current threads is waiting e.g. for data from global
memory. With this mechanism, the computational resources can be used quite effi-
ciently, even though there is not much cache. While on a CPU the prefetcher tries to
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Figure 4.1: Schematic comparison of CPUs and GPUs. GPUs devote more transistors to
calculations. A CPU has more cache per core. Also not every core on a GPU
has its own control unit. All warps within a thread have to execute the same
instruction or idle. Graphic taken from ref. [60].

estimate what data needs to be read next, on a GPU this is not needed. This only works
if there are enough threads that can be computed while others are waiting for data
from global memory.

Another important point is the way memory is read from global memory. If data is
read from global memory, it is, by default, cached. A cache line is 128 bytes long. That
means that when ever something is read from global memory, the whole cache line is
read. Therefore, memory accesses should be constructed such, that the whole cache
line is used. This in general achieved by letting consecutive threads read consecutive
data. As cache lines are always aligned to 128 bytes, the data in memory should also
be aligned. Alignment means that the the address p1 of the first element which is read,
is a multiple of 128, i.e. p1 mod 128 = 0. If this is not the case, than two cache lines
have to be read. This can slow down the execution of the program tremendously, if the
execution time is limited by the speed of memory transaction.

4.2 ESPResSo

On the project home-page of ESPResSo1 the package is described as

[...] a highly versatile software package for performing and analyzing sci-
entific Molecular Dynamics many-particle simulations of coarse-grained
atomistic or bead-spring models as they are used in soft-matter research
in physics, chemistry and molecular biology. It can be used to simulate
systems such as polymers, liquid crystals, colloids, ferrofluids and biologi-
cal systems, for example DNA and lipid membranes.

1http://espressomd.org
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ESPResSo is free, open-source software published under the GNU General
Public License (GPL). It is parallelized and can be employed on desktop
machines, convenience clusters as well as on supercomputers with hun-
dreds of CPUs. The parallel code is controlled via the scripting language
Tcl, which gives the software its great flexibility.

ESPResSo is used in scientific working groups all over the world both as
a production platform as well as a research platform for developing new
algorithms and methods for coarse-grained simulations. It is mainly devel-
oped at the Institute for Computational Physics of the University of Stuttgart,
but has contributors from all over the world.

The fact that ESPResSo is licensed under the GPL has the advantage that every user
can read the source code and understand how the software or the algorithm works.
As earlier Stokesian Dynamics implementations were not published under an open li-
cense, for example [33, 55, 1], it has not been possible to improve the existing codes.
There are open source implementation of hydrodynamic interactions, for example one
by Kopp and Höfling [62]. But this implementation approximates the lubrication cor-
rection by a first order Taylor approximation. As the eigenvalues of the lubrication
correction are often larger than one, this approximation would not converge even if
a higher order approximation would be used. Also the Ewald summation, which is
needed for periodic boundary conditions, is missing.

As the target was to implement this in ESPResSo, the implementations was written
from scratch. As this code is now freely available, other can improve this code rather
than solve challenges that have been already solved.

Other useful features are the large number of implemented observables, and the
correlator. The correlator is especially useful, as this is needed to e.g. calculate the
hydrodynamic function or the mean square displacement.

4.2.1 GPU support

Due to the vast computational power of graphic cards, some algorithms in ESPResSo
have been ported to CUDA. Examples are the lattice-Boltzmann, P3M and MMM1D
[63]. In addition the electrokinetics solver has been only implemented for the GPU
[46]. Especially for grid based application, the GPU can give a huge speedup. The GPU
implementation run on a single Nvidia Tesla M2050 is about 50 times faster than the
CPU implementation run on two Intel Xeon E5620 quad core processors.
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4.2.2 Lattice-Boltzmann

The lattice-Boltzmann implementation in ESPResSo uses a point coupling scheme.
The particle exchanges momentum proportional to the difference in the velocity of
the fluid compared to the particle’s velocity and a friction constant. Thereby the fluid
is extrapolated considering the surrounding lattice nodes. Also the force is smeared
onto the grid, using a two or three point coupling scheme.

The lattice-Boltzmann code in ESPResSo does not have a lubrication correction. As
the particle coupling is done with point coupling, the method described in ref. [51] is
not applicable.

4.3 Stokesian Dynamics implementation

This section will introduce the implementation of Stokesian Dynamics in ESPResSo.
Figure 4.2 gives an overview over the most important functions, and the order they are
called. Some of the function will be introduced in sec. 4.3.1. The way the matrices
are stored in memory will be shown in sec. 4.3.2. The different versions of the code,
which can also influence the functions called, are listed in sec. 4.3.3. Some timings and
a rough approximation of the scaling are shown in sec. 4.3.4.

4.3.1 Functions

integrate_sd()

This is a replacement for the existing integrate_vv() function. The original velocity
verlet integrator had four separate function calls, to do the different parts of the po-
sition and velocity updates. Therefore this function has been replaced by a separate
function, as some parts are not required any more in the case of Stokesian Dynamics.

The function is mainly responsible for calling the function to calculate the forces and
to call propagate_pos_sd()

sd_compute_mobility_matrix_real_short()

This function implements the real part of the Ewald summation, as it is described in
eq. (3.32). For every three lines of the matrix, a thread is responsible. In the beginning,
the threads read the positions for the particle of the warp. Later the other positions are
read coalesced and cached in shared memory. The dense matrix, which is the output
of this function, is written coalesced. In the matrix every line is 128 byte aligned. The
function requires that the cutoff is not larger than L/2, where L is the box length. This
way it is sufficient to loop over every particle only once.
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• integrate_sd() *

• propagate_pos_sd()

• propagate_pos_sd_cuda()

• sd_compute_displacement()

• sd_compute_mobility_matrix_real_short() *

• sd_compute_mobility_matrix_wave_cpu() *

• sd_compute_mobility_sines() *

• sd_compute_resistance_matrix_sparse() *

• sd_iterative_solver()

• sd_gmres_solver() *

• curandGenerateNormalReal() *

• sd_compute_brownian_force_nearfield()

• sd_compute_brownian_force_farfield() *

• calculate_maxmin_eigenvalues()

• calculate_chebyshev_coefficents()

• sd_iterative_solver()

• sd_gmres_solver() *

• sd_real_integrate

Figure 4.2: Function tree of the Stokesian Dynamics implementation in ESPResSo.
The indention means that the indented function is called by the one in the
level above. The function marked with * are later described in more detail.

If the feature SD_NOT_PERIODIC is enabled, the Ewald summation is not used. In-
stead ofsd_compute_mobility_matrix_real_short() the functionsd_compute_mo-
bility_matrix() is called. In this case the normal Rotne–Prager tensor is used to
construct the mobility matrix without any cutoff.

sd_compute_mobility_matrix_wave_cpu()

The ~kλ and corresponding matrices Mk(~kλ) as defined in eq. (3.31) are calculated. First
the number of needed vectors is calculated. Additionally the required memory on the
GPU is allocated, and the computed vectors and matrices are copied to the GPU.
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sd_compute_mobility_sines()

In this function sin
�

~kλ · ~Ri

�

and cos
�

~kλ · ~Ri

�

are computed. They are later needed to
compute the Fourier space contribution to the matrix vector product.

sd_compute_resistance_matrix_sparse()

This function computes the lubrication correction described in equation (3.24). A
naive implementation would implement the loop to find the interacting particles in
this function:

1 int i=threadIdx.x+blockDim.x*blockIdx.x;
2 for (int j=0;j<N;j++){
3 real dist2 =0;
4 for (int l=0;l<3;l++)
5 dist2+=SQR(pos[i*3+l]-pos[i*3+l]);
6 if (dist2 < cutoff2){
7 /*
8 * calculate lubrication
9 */

10 }
11 }

This implementation would be fine to run on a CPU. On a GPU the problem is that
the code would branch. As the cutoff is of the length of the particle radius, most par-
ticles are not interacting. Therefore most times the branch is not taken. On a GPU, if
any thread within a warp takes this branch, all others have to wait for this branch to
finish. As most of the computation is done in this loop, most of the time only a single
core would be computing, while the rest is waiting. In such an implementation, the
massively parallel power of the GPU is not used and it is slower than a CPU. The here
chosen solution, is to find the particles that are close to each other first, and store them
in a list. They are stored in col_idx of the matrix struct. Then instead of looping over
all particles, it is only necessary to loop over the particles which are in the range.

To find the interacting particles can either be done in an O (N 2) loop or with the
use of a bucket sort. Both cases are favorable compared to the naive implementation.
The O (N 2) version has still the problem that the branch to write out the positions of
interacting particles is not taken by all threads, but as this is much faster than actually
computing the lubrication correction, this is still worth doing.
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sd_gmres_solver()

The GMRes solver has been implemented as described by Meister in ref. [36].

curandGenerateNormalReal()

This is a function of the cuRAND library. The advantage compared to the in ESPResSo
existing random number generator is that the data is directly on the GPU and doesn’t
need to be copied to the GPU. The type of the random number generator is the default,
which is an implementation of the XORWOW algorithm [64].

As it is possible to set an offset for the random number generator, the state of the ran-
dom number generator is defined by the offset and the initial seed. This is important
for checkpointing the simulation run.

sd_compute_brownian_force_farfield()

This function calculates the approximation of the far field contribution of the Brown-
ian forces based on the old eigenvalues of the mobility far field. If the thereby achieved
approximation is not sufficient, the functions is called again and calls firstcalculate_-
maxmin_eigenvalues() and then calculate_chebyshev_coefficents(). The
first one uses the Fortran library arpack-ng to calculate the eigenvalues of the far field
mobility matrix. The function calculate_chebyshev_coefficients() calculates
the Chebyshev coefficients a i for the approximation in equation (3.63). If the far field
only version of the code, SD_FF_ONLY, is used, than directly the displacements instead
of the forces are calculated.

4.3.2 Matrix Memory Layout

In order to simplify matrix operations, all properties of a matrix have been put in a
struct:

1 struct matrix{
2 public:
3 real * data;
4 int * col_idx;
5 int * row_l;
6 wavepart * wavespace;
7 bool is_sparse;
8 int size;
9 int ldd;

10 int ldd_short;
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11 matrix ();
12 ~matrix ();
13 void _free_wavespace ();
14 private:
15 matrix(matrix & other); // disable copy ←-

operator
16 };

data is the pointer to the data in the matrix. In the case it is saved as dense matrix, the
elements within a row are stored one after another in memory. The beginning of a row
was always 128 byte aligned. All the arrays are stored on the GPU, and should therefore
not be dereferenced on the host.
size gives the number of rows, and in the case of a dense matrix the number of

elements per row. ldd is the length a row in memory. This is the size rounded to the
next integer divisible by 32.

If a sparse matrix is stored, a scheme similar to ELLPACK-R as described in [65] is
used. The scheme of this storage format is shortly explained in fig. 4.3. As the matrix

matrix A:

data: col_idx: row_l:

ELLPACK-R
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Figure 4.3: The ELLPACK-R Format. This format is optimized for matrix vector multi-
plications on GPUs [65].

consists of symmetric 3×3 blocks, instead of saving the actual row length for each row,
only the length divided by three is saved for every three rows. The same applies for the
column index, here only one index per block is saved.

As the Ewald summation of the Rotne–Prager tensor is used for periodic systems, the
matrix has, in addition to the real space contribution, a Fourier space contribution. As
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it saves time to not add the Fourier space to the matrix, the Fourier space contribution
is also stored as an extension to the matrix struct. This extension is again a struct:

1 struct wavepart{
2 public:
3 real * vecs;
4 real * matrices;
5 real * cosines;
6 real * sines;
7 int num;
8 int max;
9 int & ldd_short;

10 wavepart(int _ldd_short);
11 ~wavepart ();
12 private:
13 wavepart(wavepart & other);
14 };

All num ~k vectors are stored in the pointer vecs. The symmetric matrices Mk are stored
in matrices. Thereby only the 6 unique components are stored. For every matrix first
the diagonal entries and then the off-diagonal entries Mk

12, Mk
13 and Mk

23. sines and

cosines contains the pre-computed values sin(~k · ~ri ) respectively cos(~k · ~ri ). The fast
index is the particle index and the Fourier space index the slow one. This means that
the sines for the same k vector are directly one after another in memory. ldd_short
is the rounded number of particles.

4.3.3 Versions of the code

The code is able to switch between configurations at compile time. It is for example
possible to switch between single and double precision for the GPU code. Single preci-
sion means floating point numbers of 32 bit length, and double precision means float-
ing point numbers of 64 bit length. The 32 bit numbers are also called single or floats.
Nvidia’s consumer GPUs, like the GeForce series, have notably fewer double floating
units as the high performance computing (HPC) GPUs [60]. Therefore it is, especially
if the software is run on GeForce cards, useful to use the single floating point preci-
sion. The problem is, however, that the accuracy of single floating point is sometimes
not sufficient. Examples are that the eigenvalues of the mobility matrix M f f cannot be
accurately determined or the iterative solver fails. If such problems occur double pre-
cision can help to stabilize the simulation. With the feature SD_USE_FLOAT the code
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can be told to use floats instead of double. The default is double precision.
It is also possible to simulate periodic and non-periodic systems with the current

Stokesian Dynamics implementation. Depending on which version is used different
kernels are used for the calculation of the mobility in the far field. The default is to use
periodic boundary conditions and the Ewald summation. This can be switched with
the feature SD_NOT_PERIODIC to use no periodicity in the mobility calculation. Note
that the force calculations are not influenced by this feature.

Another compile time switch disables the lubrication correction. In this case the it-
erative solver has not to be used. This can significantly speed up the simulation, and
is therefore useful if lubrication does not play a big role for the simulated spheres. If
there are no spheres within the cutoff radius of lubrication correction, than the itera-
tive solver is not used anyway. If there are sometimes some spheres which would have
even a tiny lubrication correction, this can slow down the code significantly. The radial
distribution function can be used to estimate the influence of the lubrication correc-
tion. The lubrication correction can be disabled with the feature SD_FF_ONLY.

4.3.4 Timings and Scaling

Figure 4.4 shows the timings of some test runs for various configurations. These tim-
ings show only a rough estimate of the speed of the code. The particular system and
how fast the eigenvalues change can influence the speed strongly, especially in the case
of the lubrication correction. If all particles are further away from each other, than the
cutoff of the lubrication correction, than it is only slightly slower than the version with-
out lubrication correction. The version with lubrication and with periodic boundaries
is so slow, that only for small particle numbers the duration was acceptable. For this
case the GPU version is certainly not useful, as most kernels use only one thread per
particle. In the case of 128 particles, this means that many multi processors are idling.
In this case, latency hiding is not possible, and a CPU would probably be faster.

The simulations have been run without lubrication and without Ewald summation
for both single and double precision. It is noticeable that the double precision imple-
mentation is only slightly slower than the single precision one. This is probably be-
cause the timings are limited by the latency on the GPU for read or write transactions
from global memory, but also by transfer times from the GPU to the host. The transfer
times are for small data packages almost independent of the data size. In the case of
periodic boundary conditions, double precision is more than twice as slow as single
precision. Hence, the simulation time is not dominated by latencies. Here, also the
memory bandwidth or the number of double precision floating point units is limiting
the speed.
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Figure 4.4: Timings of the Stokesian Dynamics implementation for various configura-
tions (lowest is fastest). The slowest version was the one with lubrication
correction and Ewald summation (orange circles). This configuration was
only stable for double precision. The Ewald summation (blue crosses) is
for small particle numbers faster than the lubrication correction (green tri-
angle), however as the Ewald summation has a scaling of O

�

N 3/2
�

and the
other O (N 2), for N > 1500 the Ewald summation is faster. The fastest ver-
sion is without lubrication correction, without Ewald summation and with
single precision. It is notable that the double precision is not much slower
than single precision.
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5 Results

In this chapter the results will be presented. Section 5.1 will discuss the issues which
arise when negative eigenvalues appear in the mobility matrix due to using a cutoff for
the hydrodynamic interactions. In section 5.2.6 Stokesian Dynamics will be used to
study a colloidal system. The results will be compared with lattice-Boltzmann simula-
tions.

5.1 Negative eigenvalues ofM in Stokesian Dynamics

During the implementation, negative eigenvalues of the mobility matrixM were ob-
served with PBCs. This was before the Ewald summation was implemented. The stud-
ied system had a volume fraction of φ ≈ 0.12 and 500 particles. Periodic boundary
conditions were applied by using the nearest image convention. Every particle inter-
acts only with the nearest image of every other particle. In order to assert that the
negative eigenvalues were not due to the asymmetric cutoff, a spherical cutoff was in-
troduced. And even after expanding the cutoff to ten times the box length, negative
eigenvalues persisted.

The negative eigenvalues also appeared without PBCs when an artificial cutoff was
introduced. This indicated that the problem is due to the cutoff which is introduced
when PBCs are implemented with the nearest image convention.

An example for a configuration where a cutoff results in a negative eigenvalue is
shown in fig. 5.1. The arrows represent a force acting on the particles. The way the
cutoff is chosen results in more particles within the range of the cutoff that feel a force
in the opposite direction as the particle itself. As the particles are close, they feel, due
to hydrodynamic interactions, a forces in the opposite direction as they are initially
pulled. This leads to a movement in the opposite direction as the force, shown with
the arrows. Mathematically this is represented by the fact that this eigenvector has a
negative eigenvalue. This corresponding negative eigenvalue is λn ≈−0.137 1

6πηa
.

The problems caused by negative eigenvalues are mentioned in sec. 3.1.4. In the
case without PBCs, this can be avoided if no cutoff is introduced. With PBCs, the Ewald
summation has to be used, in order to avoid a cutoff producing negative eigenvalues.
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rc

Figure 5.1: Simple example of a configuration that leads to a negative eigenvalue in
the mobility matrix. The mobility matrix was constructed using the Rotne–
Prager tensor. Shown in green are the spherical particles, which are all on
the same plane. The cutoff radius rc is shown for the lower right particle
by the dashed blue line. The high-dimensional eigenvector of the mobility
with the negative eigenvalue is shown with solid black arrows.

5.2 Comparison of lattice-Boltzmann and Stokesian
Dynamics

In this section the hydrodynamic function of a Yukawa system was studied. This was
done with ESPResSo and the Stokesian Dynamics implementation which is also part
of ESPResSo. The GPU implementation of lattice-Boltzmann in ESPResSo was used
[63]. The system parameters of the simulations, are introduced in sec. 5.2.1. In order to
compare the hydrodynamic functions for lattice-Boltzmann and Stokesian Dynamics,
some properties of the hydrodynamic function are discussed in sec. 5.2.2 and sec. 5.2.3.
They are important as the measured hydrodynamic function is a quantity describing
the hydrodynamic interactions that the two algorithms produce. Results obtained with
the Langevin thermostat are discussed in sec. 5.2.4 The hydrodynamic function of the
Stokesian Dynamic simulation is presented in sec. 5.2.5 before in sec. 5.2.6 the lattice-
Boltzmann results are analyzed.

5.2.1 System Parameters

As described in section 2.1, a Yukawa system can be described with two dimensionless
parameters, κ and Γ. For these simulations they where chosen as κ = 3 and Γ = 500.
For these parameters the Yukawa system is in a fluid like state. The other parameters
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Figure 5.2: Sketch of the simulated system. As the hard core repulsion was not mod-
eled, the hydrodynamic radius of the colloids is shown in red. The box of
the periodic boundary condition is sketched in blue. The graph has been
created with VMD [66].

are given in molecular dynamics units. The particle density was n = 0.1a−3. The box
size L, if not otherwise mentioned, is chosen as L = 16a . All simulations were done in
equilibrium. For the Stokesian dynamics simulation a hydrodynamic radius of r SD

h =
0.4a was chosen. The viscosity η in the Stokesian Dynamics and Brownian Dynamics
simulation was chosen as η= 1.

Fig. 5.2 shows a sketch of the simulated system. The colloids interact via Yukawa
potentials and hydrodynamic interaction. As no hard core repulsion was modeld, the
graph shows the hydrodynamic radius of the Stokesian Dynamics simulation.

The structure factor obtained with Brownian Dynamics is shown in fig 5.3. As this
is a static property, it does not depend on the hydrodynamic interactions and also not
on the simulation type. The first peak is around k = 3.25/a . The second at k ≈ 6.24/a
and the third at k ≈ 9.5/a are much smaller. The peaks are related to the mean particle
nearest neighbor distance. The forth at k ≈ 12.9/a and fifth at k ≈ 16.5/a are barely
visible, as there is no long-ranged order, as expected for a fluid [23]. It looks similar to
a radial distribution function g (r ). This is due to the fact, that both g (r ) in the limit of
high r and S(k ) in the limit of high k decay to one, if there is no long ranged order. In
the limit of k → 0 the structure factor does not decay to zero, unlike g (r ). The value for
k → 0 is related to the isothermal compressibility [67].
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Figure 5.3: Plot of the static structure factor over the k -vector of a Brownian Dynamics
simulation. The system parameters are mentioned in sec. 5.2.1.

5.2.2 Autocorrelation Function of the Structure Factor

The hydrodynamic function is calculated using the autocorrelation function (ACF) of
the structure factor. As mentioned in section 3.4.3, this function should decay expo-
nentially. Fig. 5.4 shows an example of the ACF for a single k vector of the structure
factor. The simulation data fits well if several exponential decays are fitted to the sim-
ulation data. On the left, for the smallest timescale, the exponential decay in the short
time diffusion is fitted, with a decay rate of 1

τ1
≈ 5.21. The decay in the long-time dif-

fusion was not fitted, as the long-time diffusion start at t ≈ 2, see fig. 5.6. The other
relaxation rates 1

τ2
≈ 2.12 and 1

τ3
≈ 0.76 are on the timescales where the transition from

short-time and long time diffusion is taking place and the physical origin of the relax-
ation process is unclear at this time.

This multi-exponential behavior is visible for all k vectors in the ACF of the structure
factor and not only for this single k vector. The time where the transition between
the different decay rates happens, however depends on the k vector. For example,
the collective modes have for times larger than the short-time diffusion still the same
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Figure 5.4: Time dependence of the ACF of the structure factor for k = 1.57/a using a
Brownian Dynamics simulation. Additional to the simulation data, shown
with symbols, three fits of exponential functions are plotted. See sec. 5.2.1
for the system parameters.

decay rate. For intermediate regimes, the transition from the first decay to the second
happens directly at the end of the short-time diffusion. The decay here is shown for a
Brownian Dynamics simulation, but this multi-exponential behavior is also observed
for lattice-Boltzmann, Stokesian Dynamics and the Langevin thermostat. Therefore,
the exponential decay has to measured in the short time diffusion.
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Figure 5.5: Hydrodynamic function of a Brownian Dynamics simulation of colloids.
The derivative of the autocorrelation function of the structure factor is taken
at different times. The uppermost curve, taken at τ= 0.0001, shows the ex-
pected result. See sec. 5.2.1 for the system parameters.

5.2.3 Time dependence of the hydrodynamic function

The hydrodynamic function is calculated using equations (3.80) and (3.83). That means
that H (k ) has in reality a time dependency H (k ,τ), as it matters where the time deriva-
tive is taken. It has been shown in section 3.4.4 that the hydrodynamic function of
Brownian Dynamics simulations is a constant.

Figure 5.5 shows different measured hydrodynamic functions. Although it can be
shown analytically, see sec. 3.4.4, not all measured hydrodynamic functions are, as ex-
pected, a constant. Only if the derivative is taken at τ < 0.001, the measured result
matches this expectation. For τ > 0.001 the results are not constants any more. The
hydrodynamic function measured at τ= 0.01 is still relatively close to a constant value.
The others are further away from the expected result, and with increasing τ the devi-
ation increases. The reason why they are not constants, is that they are not taken in
the short-time diffusive regime, meaning after the ballistic regime, but before the in-

48 Rotne–Prager based hydrodynamics on GPUs David Schwörer



CHAPTER 5. RESULTS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

ti
m

e-
d

ep
en

d
en

ts
el

f-
d

if
fu

si
o

n
D
(τ
)

time τ

Figure 5.6: Plot of the time-dependent self-diffusion function using Brownian Dynam-
ics. See sec. 5.2.1 for the system parameters.

fluence of neighboring particles is felt. References [23, 54] note that the derivative of
the time dependent structure factor has to be taken in the short-time diffusive regime.

It is interesting to note that for k > 15/a the hydrodynamic functions for τ > 0.001
is increasing. This is surprising, as the structure factor is for these k vectors already
decayed, and no structure is expected for these high k values.

The time-dependent self-diffusion function using Brownian dynamics of the col-
loidal system is shown in fig. 5.6. The regions of diffusion are where the function is
constant. It consists for small timescales of a short-time diffusion, as Brownian Dy-
namics directly simulates this motion and no ballistic regime. Between τ = 10−3 and
τ= 2, there is a transition region. As the slope ofD(t ) is descending in this region, this
is also called subdiffusive. For larger times the longtime diffusion is reached. The long-
time diffusion is about one third in magnitude of the short-time diffusion. The viscos-
ity or the hydrodynamic radius would not change this ratio, as the ballistic regime is
not simulated, the viscosity and the hydrodynamic radius only lead to a rescaling of
the time. If the viscosity would be increase by a factor of 10, the diffusion constant
would decrease by a factor of 10 and at the same time, the timescale would be shifted
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by a order of magnitude to larger times.

5.2.4 Time-dependent self-diffusion function using the Langevin
thermostat

In order to see the short-time diffusion regime using a Langevin thermostat, the fric-
tion γ has to be sufficiently high. The inverse of the friction is the timescale over which
the velocity autocorrelation function decays. This is only true if the timescale γ−1 is
smaller than the timescale of inter particle collisions. In order to simulate colloidal sys-
tems, this should be fulfilled, as shown in table 2.1. Fig. 5.7 shows time-dependent self-
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Figure 5.7: Time-dependent self-diffusion function using the Langevin thermostat
with a friction γ= 100. The other parameters are described in sec. 5.2.1.

diffusion using a Langevin thermostat with a friction of γ= 100. As the Langevin ther-
mostat does not neglect the velocities, the ballistic regime can be seen for τ< 0.02. For
τ > 0.05 a subdiffusive regime follows. The long-time diffusion is reached for τ > 20.
As there is no clear plateau between the ballistic regime and the subdiffusion regime,
the short-time diffusion regime, seen at small τ in fig. 5.6, is not reproduced. For the

50 Rotne–Prager based hydrodynamics on GPUs David Schwörer



CHAPTER 5. RESULTS

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

10−5 10−4 10−3 10−2 10−1 100 101 102 103

ti
m

e-
d

ep
en

d
en

ts
el

f-
d

if
fu

si
o

n
D
(τ
)

time τ

Figure 5.8: Time-dependent self-diffusion function using the Langevin thermostat
with a friction γ= 1000. The other parameters are described in sec. 5.2.1.

system, this means that they are in the ballistic regime, when the influence of the next
particles comes into play. A corresponding physical system would have a very dense
gas in which the colloids move. To simulate however colloids in an aqueous suspen-
sion, the friction has to be increased.

Figure 5.8 shows the the time dependent diffusion for a friction coefficient of γ =
1000 using the Langevin thermostat. The short-time diffusion is visible between t ≈
0.005 and t ≈ 0.5. Again, for shorter times the ballistic regime is visible. Note that the
increase is linear. It looks distorted, as this is a semi-log plot. For higher times first
the subdiffusive regime between τ≈ 0.5 and τ≈ 500 and finally long-time diffusion is
reached for τ≈ 1000.

The absolute values of the diffusion for γ = 1000 are smaller than in the case of γ =
100 and even smaller than in the case of Brownian Dynamics. This is no problem if
those two methods should be compared, because by scaling the viscosity in Brownian
Dynamics or in Stokesian Dynamics, the results can be matched in the short or long-
time diffusion. The ratio between short-time diffusion and long-time diffusion, is, as
in the case of Brownian Dynamics, about one third.
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Unlike in the case of a friction of γ = 100, here a clear short-time diffusion regime
is visible. As Ref. [68] mentioned, it is possible to telescope the timescales together,
but if an important regime, like the short time diffusion is neglected, this is not physi-
cal. Additionally to simulate the correct physics, the short-time diffusion is needed to
calculate the hydrodynamic function.
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Figure 5.9: Measured hydrodynamic functions H (k ) of the Langevin thermostat with
a friction of γ = 1000, taken at different τ in the short-time diffusion. The
other system parameters are given in sec. 5.2.1.

The hydrodynamic function, shown in fig. 5.9 has been measured within the short-
time diffusive regime. To be precise, for τ = 0.001 the system is still in the transition
between ballistic and short-time diffusion. This results in an underestimation of the
hydrodynamic function. For τ= 0.005 and τ= 0.1 the functions are close to a constant
value, but a bit smaller in magnitude than they for τ = 0.01 and τ = 0.05. This means
that the short time diffusion is not perfectly flat, but the short time diffusion is in the
center at τ ≈ 0.02 a bit larger than at τ = 0.1 or τ = 0.0005 The function measured
at τ = 0.5 shows for small k values the right value, however, for larger k values, the
function decreases. As discussed in sec. 5.2.2 the collective modes have only for higher
times a lower decay rate, therfore it is not surprising to see in the collective regime a
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higher hydrodynamic function than for higher k values. If the derivates are taken in
the range 0.005 ≥ τ ≥ 0.1, the measured hydrodynamic functions yield the expected
result, a constant independent of k.

5.2.5 Hydrodynamic function of Stokesian Dynamics

Figure 5.10 shows the hydrodynamic function of the Yukawa system, described in sec. 5.2.1,
which was obtained with the Stokesian Dynamics implementation. It was measured at
τ= 0.0001, therefore the result should not be influenced by the problems discussed in
sec. 5.2.3. It is clearly visible that the collective diffusion is reduced due to the hydro-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20

H
(k
)

k [a−1]

Figure 5.10: Plot of the hydrodynamic function obtained using Stokesian Dynamics.
See sec. 5.2.1 for the system parameters.

dynamic interaction. At k ≈ 3/a the hydrodynamic interactions increase the motion.
This is also where the structure factor has its first peak, which makes sense since hydro-
dynamic interaction should be strongest between nearest neighbors. Also at k ≈ 6/a
the structure factor has a peak which is smaller than the main peak at k ≈ 3, and the
same holds for the hydrodynamic function. The next peak at k ≈ 9/a is only barely
visible. It seems that at length scales where there is structure, the motion is increased.
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This could be explained by the fact that the motion of together moving spheres is in-
creased by hydrodynamic interactions.

For large k vectors, the hydrodynamic function is not changed in comparison to
Brownian Dynamics. This corresponds to short length scales, where there is only a
single particle, and the hydrodynamic interaction is only that of a single sphere with
the fluid. This is also what is modeled in Brownian Dynamics, and therefore it can be
explained that both methods match in the single particle short-time diffusion.

5.2.6 Viscosity in the Lattice-Boltzmann Method

Lattice-Boltzmann has additional parameters compared to the Langevin thermostat.
The lattice-Boltzmann implementation in ESPResSo needs additionally to the friction
γ also the grid spacing a , the viscosity η, the time step∆t and the fluid density ρ. Due
to the point coupling scheme, the grid spacing a is limited as the hydrodynamic radius
is mainly influenced by the grid spacing, see eq. (3.73). The time step has to be at least
small enough to resolve the fluctuation of the particles, and has to be

τ<
1

γ
(5.1)

so that the integration is stable. Choosing an even smaller τ would lead to a further
increase of the computational cost and is therefore unfavorable.

The viscosity has been chosen to tune the hydrodynamic function to fit the results
obtained from the Stokesian Dynamics simulation. As shown before in section 5.2.3
it is necessary to measure the time-dependent self-diffusion to measure the hydrody-
namic function in the region of short-time diffusion. Therefore, first the time-dependent
self-diffusion has been measured for different viscosities η. The results are shown in
fig. 5.11. With increasing viscosity the diffusion decreases. For viscosities η < 100 the
short-time diffusion vanishes. For lower viscosities the time-dependent self-diffusion
only reaches a plateau in the longtime diffusion. The short-time diffusion is not re-
produced for such low η. For η ≤ 10 it looks like the ballistic regime would extend up
to τ ≈ 0.5. But this regime is not a ballistic regime, but rather a superdiffusive regime
whereD(t ) obeys a power law

D(t )∝ t α (5.2)

where the exponentα is smaller than 2. For the case ofη= 0.2 the exponent isα≈ 1.66.
The reason for this superdiffusion is probably that the momentum relaxation time of
the fluid is too large. This introduces long-time correlation in the system, which results
in the vanishing of the short-time diffusion. As shown in table 2.1 the relaxation time of
the fluid is larger than the time over which the ballistic motion decays, but it still should
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Figure 5.11: Time-dependent self-diffusion for lattice-Boltzmann. The ballistic regime
is omitted. All simulations are done with a friction of γ = 1000 and a time
step∆t = 0.0005. The other system parameters are given in sec. 5.2.1.

be much smaller than the time over which the configuration changes. Therefore the
short-time diffusion should be clearly visible.

Figure 5.12 shows the hydrodynamic function of a lattice-Boltzmann simulation for
different viscosities. With decreasing viscosity, the hydrodynamic function increases.
The collective diffusion for lower k values increases far less then the single particle
region. For η = 10000 the hydrodynamic function is nearly constant. For the lower
viscosities, the particles are dragged with the lattice-Boltzmann fluid. The lower the
viscosity, the stronger the influence of the fluid. Note that in a physical system, the
viscosity should not have an influence on the normalized hydrodynamic function. The
viscosity would lead to a scaling in time, which would lead to a scaling of the relaxation
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Figure 5.12: Hydrodynamic function over k for lattice-Boltzmann. All simulations are
done with a friction of γ = 1000 and a time step ∆t = 0.0005. The other
system parameters are given in sec. 5.2.1.

times of the autocorrelation function of the structure factor. But as this is for all k
vectors the same scaling, after the normalization this difference would be gone.

Figure 5.13 displays the normalized hydrodynamic function for both lattice-Boltzmann
and Stokesian Dynamics. The lattice-Boltzmann results for viscosities η> 10 the influ-
ence of the hydrodynamic interaction is underestimated. For η= 10 the collective in-
fluence, at low k values, is correctly modeled. For higher k values at k > 3 the influence
is under estimated. For η< 10 the slow down of the collective mode is over estimated.
At the first peak at k ≈ 3.25/a the influence is under estimated, and the increase of mo-
bility is too low. To be specific, the transition from over to under estimation happens
at k ≈ 1.4/a . Although there are differences for η≤ 10 between lattice-Boltzmann and
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Figure 5.13: Normalized hydrodynamic function H̃ (k ) over k for lattice-Boltzmann
and Stokesian Dynamics (SD). All lattice-Boltzmann simulations are done
with a friction of γ = 1000 and a time step ∆t = 0.0005. The other system
parameters are given in sec. 5.2.1.

Stokesian Dynamics, the agreement is still rather good. For higher viscosities, the in-
fluence of the hydrodynamic interaction vanishes with increasing viscosity. This would
mean that smaller viscosities give better results, but the time dependent single parti-
cle diffusion suggested the opposite, that larger viscosities model reality better. It is
therefore, based on this analysis, not clear what parameters to use.
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6 Conclusion and Outlook

Stokesian Dynamics is a powerful tool to simulate hydrodynamic interactions. The
fact that it is possible to directly simulate an over-damped system is an advantage, as
it lowers the computational cost.

One very important thing which one should take care of, is to avoid a cutoff in the far
field of the hydrodynamic interactions, as discussed in sec. 5.1. In the absence of pe-
riodic boundary conditions this is straight forward to fulfill by looping over all particle
pairs. If periodic boundary conditions are used, the Ewald summation of the Rotne–
Prager tensor has to be used. In this way negative eigenvalues can be avoided. This is
for physical reasons important, but also for practical reasons, as negative eigenvalues
can lead to a break down of the implicit or explicit solvers for the inverse matrix. It is
also not possible to thermalize a system with negative eigenvalues. Additionally, the
system can behave unphysically if negative eigenvalues appear.

In the comparison of the hydrodynamic function, obtained with lattice-Boltzmann
and Stokesian Dynamics, it was possible to tune the lattice-Boltzmann parameters to
obtain a hydrodynamic function close to the one of Stokesian Dynamics in sec. 5.2.6. It
seems that, even with point coupling, proper hydrodynamics can be simulated. It was,
with the chosen method, not distinguishable whether for frictions γ < 1000 hydrody-
namics were incorporated correctly in the simulation as discussed in sec. 5.2.4. If one
uses lattice-Boltzmann for the simulation of a colloidal system, one should therefore
always check the mean square displacement. If the system does not reach short-time
diffusion before the inter-particle interactions become dominant, the friction should
be increased. In addition, the hydrodynamic function should be checked. Hydrody-
namic functions of other simulation methods can be matched to the one produced by
Stokesian Dynamics when the system cannot be simulated with Stokesian Dynamics.
This is not limited to lattice-Boltzmann simulations. All methods in which reasonable
results can only be expected within a certain limit, or if the parameters are not directly
linked to physics, at least the mean squared displacement and the hydrodynamic func-
tion should be matched. Examples are dissipative particle dynamics (DPD) [69], multi-
particle collision dynamics (MPC / SRD) [70], or as studied here the lattice-Boltzmann
algorithm [71].

The current version of the code for a system consisting of 1000 particles about needs
100 ms for a time step on a GeForce GTX 680 with periodic boundary conditions switched
on. This can probably be further improved, if a grid based FFT method, as described by
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Sierou and Brady in ref. [55] would be implemented. As regular grid based algorithms
can be especially efficient on GPUs, using CUDA for implementation would be bene-
ficial. The improvement would be necessary, to study systems with more than a few
thousand particles.

A second possible improvement of the code would be to incorporate higher mo-
ments of the force density in the mobility matrix. The current version of this imple-
mentation has the first moments, namely forces and displacements. Higher moments
would be needed to simulate dense suspensions. The higher degrees of freedom, such
as rotation, are short ranged. Therefore they can probably be neglected in Yukawa sys-
tems, where the electrostatic repulsion prevents colloids from getting close. To study
systems of dense suspensions, or suspensions where the particles are close to contact,
the higher moments might be important for the simulation of the correct dynamics of
the system.

With the current implementation it is possible to study systems of up to 5000 parti-
cles. Hydrodynamic interactions in colloidal systems can be studied, as already done
in this work. Here the focus was on the short-time dynamics of colloids interacting
via the Yukawa potential. Also long-time dynamics can be studied. The crystallization
process of a colloidal Yukawa system can be studied. This would allow one to study
whether the deviations in the short-time dynamics of the hydrodynamic function of
lattice-Boltzmann influence the results in the long-time dynamics of the crystalliza-
tion.

It might also be of interest to further study the hydrodynamic function obtained by
lattice-Boltzmann simulations. Although the hydrodynamic function of the lattice-
Boltzmann fluid is close to the one obtained with Stokesian Dynamics, there is still
room for improvement. A possibility would be to vary the time step, and to increase
thereby the speed of sound. A better match with the hydrodynamic function of the
Stokesian Dynamics could be in this way achieved. The disadvantage is that a smaller
time step always means a higher computational cost, as the total number of time steps
increases in order to propagate the system by the same time.
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