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General Remarks
• Deadline for the report is Monday, 29th of May 2017, 12:00 noon

• In this worksheet, you can achieve a maximum of 20 points.

• The report should be written as though it would be read by a fellow student who
attends the lecture, but doesn’t do the tutorials.

• To hand in your report, send it to your tutor via email.

– David (david.sean@icp.uni-stuttgart.de)

• Please attach the report to the email. For the report itself, please use the PDF
format (we will not accept MS Word doc/docx files!). Include graphs and images
into the report.

1



• The report should be 5–10 pages long. We recommend using LATEX. A good
template for a report is available online.

• The worksheets are to be solved in groups of two or three people.

1 Introduction
This tutorial is based on an article by Deserno et al. [1]. Throughout the tutorial, you
will try to reproduce some plots from the article. As further reading, you can refer to
[2], which is probably a bit more comprehensive.

Task (3 points)
• Read the article [1].

You can access it online: http://pubs.acs.org/doi/abs/10.1021/ma990897o
If you have trouble accessing the article, write an email to your tutor!

2 Short Questions - Short Answers

Task (4 points)
Answer the following questions:

• What is counterion condensation?

• What does the Bjerrum length describe?

• Describe the concept of a mean field theory. (2 points)

3 The Simulated System
The system under consideration is a so-called cell model of a polyelectrolyte, i.e. a
polymer that dissociates charges in solution (cf. lecture). In the cell model, a poly-
electrolyte is modelled as a single, charged, infinite rod with its counterions and maybe
some additional salt that is confined to a cylindrical cell. The observable of interest is
the distribution of ions P (r) around the rod.
To obtain the charge distribution, we will introduce two methods that can be used to
tackle the problem. The first method is the Poisson-Boltzmann theory, an analytical
mean-field theory, the second method is to carry out computer simulations. We will
learn about the strength and weaknesses of both methods.
The cell model is defined by the following parameters:

Bjerrum length lB In water, the Bjerrum length is 7.1 Å under normal conditions.
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Line charge density λ The line charge density of the rod is the number of charges per
length unit. It is closely coupled to the Manning parameter ξ = λlB

e0
.

Rod radius r0 The radius of the charged rod defines the minimal distance between an
ion center and the rod center.

Cell radius R The radius of the cylindrical cell defines the maximal distance between
an ion center and the rod center.

Valency of the counterions v The valency of the counter ions.

The default values we are going to use are:

lB = 1.0, λ ∈ {1.0, 2.0}, r0 = 1.0, R = 28.2, v = 1

Note that you should do the following tasks for both values of λ.

4 Analytical Solution: Poisson-Boltzmann Theory
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Figure 1: Poisson-Boltzmann solution for the charge distribution P (r) over radius r for the default parameters.

On the one hand, the cell model for infinite charged rods can be solved within the
nonlinear Poisson-Boltzmann theory (PB).
Figure 1 shows a plot of the analytical solution of the Poisson-Boltzmann equation for
the default parameters. Note that the x-axis of the plot of the distribution P (r) is in
logarithmic scale to stress the structure close to the rod.
For the salt-free case, an analytical solution of the charge distribution P (r) exists. It is
given by equations (8) and (9) in the article. The equation contains two free parameters
γ and RM , which are defined by the equations (6) and (7) in the article.
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Task (3 points)
• Reproduce the plot in figure 1. To complete this task, you can use what-

ever program suits you best.

Hints

• First, solve equations (6) and (7) numerically and obtain values for RM and γ.

• Then, substitute the values into equations (8) and (9) to obtain a solution for the
distribution.

• If you use Mathematica, the function FindRoot[] might be useful. In Python,
look for scipy.optimize.fsolve().

5 Computer simulations
Alternatively, the charge distribution can be obtained from computer simulations.

5.1 Mapping the Cell Model onto a Simulation

It is not possible to simulate the full cell model, as it requires an infinite rod. However,
we can simulate a quasi-infinite system by exploitation of periodic boundary conditions:
we create a rod that spans the whole simulation box size and use periodic boundary
conditions in that direction. We will model the rod by a number of fixed charged particles
on a line parallel to the z-axis in the center of the simulation box. For this worksheet,
you will need to enable new features for ESPResSo. It is easiest to follow the installation
steps from the previous worksheet, but this time when editing myconfig.hpp, enable
the three following features:
EXTERNAL_FORCES
ELECTROSTATICS
LENNARD_JONES

by removing the comment symbols ‘//’. You may alternatively use the installation script
provided on the course webpage.
We would like to be able to use the fast P3M method for computing the electrostatics.
Therefore, our system has to be cubic (i.e. L = Lx = Ly = Lz) and it has to employ
periodic boundary conditions in all three dimensions.
How can we map the cylindrical cell with a radius R onto a cubic simulation box with
a box length L while still retaining the correct charge distribution? The trick is to use
the same ion density in both systems. When the total ion density is the same in the cell
model and in the simulation, we expect them to show the same charge distribution.
Note that the box length L defines the length of the simulated segment of the rod, and
consequently the charge of this segment. Since the whole system should be neutral, this
also predefines the number of counterions in the system.
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Task (2 points)
• Map the default cell model parameters onto a cubic simulation box, i.e.

compute L for the given value of R. How many ions need to be simulated?

• Download the ESPResSo template python script template.py from the
lecture’s website. This scripts sets up a system in the described way, but
for a different set of parameters. Study the script and understand how it
works. Adapt the script to the given default parameters.
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5.2 First Runs

Now the script is prepared for the first simulations. You can run the script with the
command
$> /< espresso_install_path >/ pypresso template.py

Once the simulation is finished, it will have produced output files for later analysis.
It is too expensive to measure observables after each time step and results would be
correlated. Instead, observables are measured only after a fixed number of timesteps
steps_per_frame has passed (which is referred to as a simulation frame). The number
of frames that are done in a single simulation run is defined by max_frames.
The script will create two measurement files and a checkpoint file:

rod-energy.dat contains the total coulomb energy over time.

rod-dist.vsf will contain the structure header of particles for every time frame (see
vtf,vsf,vcf format).

rod-dist.vcf will contain the positions (x, y, z) of particles for every time frame (see
vtf,vsf,vcf format).

Task (2 points)
• Run the previously adapted script template.py and visualize the trajec-

tory with VMD. Do you see ions crowd near the rod?

• Analyze the trajectory file rod-dist.vcf and plot the average radial dis-
tance of the counterions to the rod vs time, remember what you learned
from the VMD visualization.

Hint

• Remember that you have to run the simulations for two different values of λ!
Consider running the simulations in two different subdirectories, so that they do
not overwrite each others’ files.

• You don’t need to save the position of the rod beads, consider using type=...
parameter in writevsf() and writevcf()

• You can define the simulation box in VMD with pbc set {box_l, box_l box_l}
-all and wrap the frames with pbc wrap -all
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5.3 Equilibration and Sampling Time

Now we can start with the real simulations. First, we need to make sure that the systems
is equilibrated, and we need to get an idea how many simulation frames we will need
to sample to get good statistics. To do that, you should monitor the slowest observable
that you can find. In general, the energies and the different energy components are a
good starting point.
During equilibration, you will notice that the observable has a trend, i.e. it grows or
drops. Only after you can not observe any trend anymore, the system can be assumed to
be equilibrated. Usually, the values themselves fluctuate very strongly, so that the trend
might well hide within the fluctuations. Therefore, it is useful to create running averages
of the observables over a few hundred frames that average out the fluctuations and zoom
the resulting curve. The program xmgrace can create running averages (choose Data >
Transformations > Running Averages... from the menu).
Now you need to find out for how many frames you need to sample your simulation.
To get useful statistics, the sample should encompass at least several of the slowest
fluctuations.

Task (2 points)
• Run the simulation. Monitor the energies. Increase the number of frames

done in the script (max_frames) and rerun the simulation from the last
checkpoint several times if necessary. When you think you do not see a
trend anymore, let the simulation run again for at least the number of
steps performed so far as a safety margin.

• Now analyze the fluctuations. How many timesteps do the slowest fluc-
tuations span? If you have a number, multiply it by 10 and you have the
number of frames that your sample should minimally encompass.

5.4 Measuring the Charge Distribution

Finally, the charge distribution can be measured. Modify the the script, to make sure
the system is equilibrated before taking data. Set the number of frames to be simulated
(between data output) to the number of frames that you got out above.

Task (4 points)
• Measure the charge distribution around the rod for both values of λ.

• Plot the resulting charge distribution and compare it to the distribution
obtained from the both Poisson-Boltzmann solutions. Do they match? If
not, try to explain what might be the reason.
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Hint

• Be careful while generating the histograms! The bins do not have the same size
(they are log-spaced).
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