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-Statistical mechanics: is the tool to link macroscopic physics wit
microscopic physics (quantum physics).

-The aim is to explain the macroscopic properties of the matter fro
microscopic properties of atoms and molecules, e.g.

- Specific heat.

- Transport coefficients: viscosity, etc.

- Curie Temperature for a magnet.

- State equation for a gas. (P,V,T).

- Thermodynamics’ laws.

- Radial distribution of stars.
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-The field of statistical mechanics is enormous, e.g. :
- Gas in a container, theory of gases.
- Behaviour of photons: bulb, laser, etc.
- Atoms in a crystal.
- Galaxies and stars.
- Cars in a high-way.
- Chemical reactions, from the most simple to the most complex like BZ.




-The observed macroscopic physics is a consequence of the mi
physics when there are many particles in the system.

-ln macroscopic systems, the number of particles is enormous:

-22.4litres at NC = 6102 molecules. /
-ium3 at NC = 3*10” molecules .

- WE NEED TO USE STATISTICS METHODS TO HANDLE WITH THESE
SYSTEMS!!! It is impossible to deal with each one of the particles in th
system at an individual level.

- What makes the study of the behavior of these systems non-trivial are
the interactions among the particles, and the interaction of the particles
with external fields. This can lead for instance to phase transitions,
symmetry breaking of the temporal inversion, which cannot be explained
as a sum of the parts that form the system.



- History of the statistical mechanic

*Forerunner: kinetic theory of gases - Bernoulli (1738), Herapa
Joule (1851) > Pressure is due to the motion of particles.

* Clausius (1857) - ideal gas law. Concept of mean free path 2 first to
analyze transport phenomena.

* Maxwell (1860) - distribution of molecular speeds. Maxwell’s transp
equation.

‘Boltzmann (1868) - distrib. law for polyatomic gases (aka MB-
distribution). Boltzmann factor exp(-B¢). Equipartition theorem. H-
theorem. How to compute entropy. Transport equation.



* Ensemble theory 2 p,q,,phase point, phase space and traject
Mental copies. Density function.

*‘Maxwell (1879) & Boltzmann (1871) - first to use the idea of en

*Gibbs (1902) = makes the tool more robust, general and app
Relates it to Lagrange’s and Hamilton’s equations of motion

g.

* Planck (1900), Einstein (1905), Compton (1923) = quantum leap.

* Bose (1924) - Black body radiation = gas of photons. Photons are
indistinguishable particles (aka bosons).

* Einstein (1924) - Bose-Einstein statistics. BEC.

* Fermi (1926) > Some particles cannot occupy the same state. Fermi-
Dirac statistics. These kind of parfticles are distinguisable (fermions).

* Sommerfeld (1928) - Theory of metals.



* Reformulation of ensemble theory - need of adapting it to the

* Landau, von Neumann & Pauli (1927) - density matrix.

* Belinfante & Pauli (1939) - ah!, the spins determines if particle bosons

or fermions (distinguishable or indistinguishable particles).

* So at the beginnings of the 40’s the statistical mechanics reached its m
age.

* From 40’s to the 2007: many notorious works but mostly concerned with th
development or perfection of mathematical techniques. The era of the
computers arise and make even more fruitful the research on statistical
physics. But all this is fish from another kettle

... to be continue ...
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http://www.site.uottawa.ca/~nvlajic/ProbabilityTutorial.pdf

Defining probability:

Let us envision an experiment, for which the result is unknown.

™ [single)
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Def. 1  Sample Space (Q2) - collection of all possible outcomes.

Def, 3  Probability Space - three-tuple (Q, F Pr), where

v ) is asample space
* Fisacollection of events from the sample space (event space)

» Pris a probability measure (law) that assigns a number to each event in F

Furthermore, Pr must satisfy, for Y. A,Be F the following conditions
(1) Pr(A)z0 -
(2)  Pr(Q)=1 -
(3) A, Bare disjoint events = Pr(A+B)=Pr(A)+Pr(B) -

() | PLAUB)=P(A)+P(B)-P|AnB)

""'. .'.

(1), (2) and (3) are known as axioms of probability measure Pr.

-There are many probabilities, i.e., many
functions Pr that satisfy the 3 axioms. Using
one of them implies to identify the physical
system with the particular behavior implicit in
the function Pr . Example tossing a fair or a
biased coin.

-One of this functions (for finite sets) is

cardinal of A
Pr(A)=
r(A) cardinal of (

which leads to the ‘famous way’ of computing
probabilities for a given event

‘Relative Frequency’ Definition of Probability

Perform an experiment a number of times/trials (n), counting the occurrences of
event A (ny). Then the probability P(A) of event A can be found/defined as the limit:

P(A) = lim &

ﬂ—)-mn

but probabilities are much more than the
previous formula ! ...




Example

.....

There are 36 such pairs, and let us say that they all have the same pmhahlht} 1e., ench pmr
has the probability .

An experimental realization of such a probability space is the throwing of two dice, one red
and one blue, so that we can distinguish the first and the second entry in our pair (say, the first
belongs to the red die).

The event A :=*"the red die showed 2" is reulized b} the six puirs (2,1),12,2),(2,3). (2,4),
(2,5). and (2,6), and has thus probability = = + + -|— =+ 3 +% = 1 The eventB =

“the sum of the outcomes is even™ is realized by the lﬂpmrs( ) (1,3), ( 5),(2,2),(2,4),
(2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1). (5,3), (5,5), (6,2), (6,4), and (6,6),
and 1ts probability 1s 18 - % = % The event C' := “to throw a double™ 1s reahzed by the six
pairs (1,1}, (2,2), (3,3), (4,4), (5,5). and (6,6) and also has [Jf{]bﬂhlllt} . Note that C'1s a

subset of B. Hence, the probability of B 1 C 15 equal to the probability ﬂf B.1e. % On the
other hand, P(B) - P(C) = % Hence, B and €' are not stochastically independent,




Def.4 Conditional Probability enables us to determine whether two Theorem1 Total Probability
events, A and B, are related in the sense that knowledge about the occurrence of

one alters the likelihood of occurrence of the other. Let By, .., By be mutually exclusive events whose union equals the sample space Q.
o _Pr(AB)
probability of A given B has occurred: Pr(A[B)= Pr(B)
consequently: Pr(AB)=Pr(A|B)-Pr(B)
“ e Then, the probability of any given event AcQ can be expressed as
Y Pr(AB)=Pr( AN B)
- Pr(A)=Pr(A|B,)-Pr(B,)+Pr(A|B,)-Pr(B,)+..+Pr(A|B_)-Pr(B_)

Def. 5 Independent Events - two events, A and B, are independent if Proof: based on A = A = A(B,+By+..+B,) = ABy + ABy + .. + AB,
Pr(AB)=Pr(A)-Pr(B)

From Def. 4 and Def. = A and B are independent if Pr(A[B)=Pr(A).

%
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- Bayes’ Theorem:

__P(A|B) P(B))
N
Y. P(A|B) P(B,)
i=1

P(B|A)

-Why is Bayes’ theorem important? > suppose that we have two events, where A is the consequence, and B is the
cause which in fact it stands for several different possible reasons labeled B,,B,, ...B,,...B,.

- It can happen that it is easy to know P(A|B;) but we would like to know the reverse P(B;|A). Bayer’s theorem is then

very helpful, and does the same work that doing a tree diagram which can be very tedious if the number of B causes is
large.



Example: Look again at the sample space for throwing two dice, as we have used it above
— ordered tuples of the numbers 1, ..., 6. Let A be the event that the sum of the two dice is
larger than 7, and let B be the event that at least one of the dice shows a '5’,

The event of having a sum greater than 7 is realized by the 15 tuples (2,6), (3,5), (3,6), b
(4,4), (4,5), (4,6),(5,3), (5,4), (5,5), (5,6), (6,2), (6,3), (6,4), (6,5), and (6,6), and thus
has probability P(A) = 2 ~ 0.417. The event of throwing a 5 with at least one of the dice is
realized by the 11 events {1 5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1), (5,2), (5,3), (5,4),
and (5,6), so its probability is P(B) = 3¢ ~ 0.306. However, if we already know that one of
these 11 events occurred, the probability of now finding a sum greater than 7 is realized by the
7 tuples (3,5), (4,5), (5,5), (6,5), (5,3), (5,4), and (5,6). Hence, the probabil it},J of finding
a sum greater than 7 given that we threw at least one 5 is given by P(A|B) = — ~ (.636,
which in this case is larger than P(A).

[t 1s easy to convince ourselves that the conditional probability can be calculated as

P(AN B)
P(B)

P(A|B) = (2.9)




* We have an experiment in which can happen A or Ac
* A has associated a probability p.

* Ac has associated a probability g=1-p.

* Repeating the experiment does not change neither

we wonder: which is the probability that after doing N of such experime
In k of them the event A has happened ?

Bernoulli solved that problem P (k): N p[f q.N—_k
long time ago: N .k
Combinatorial numbers Striling’s approach

N|__ NI '
k| k!(N-k)! n/~2nnnre”




Def. 6 Random Variable (X) is a function that assigns a real number (X(a))
to each outcome o in the sample space.
Q X(a)
o | T e
.,f”f \\ .

real line

Def. 7 Continuous Random Variable - takes on an uncountablely infinite
number of distinct values,

Def.8 Discrete Random Variable - takes on a finite or countably infinite
number of distinct values,

Def. 9 Cumulative Distribution Function (cdf) Fy(x) of a random
variable X is defined as the probability of the event {X<x}.

F(x)=Pr[X<x]

consequently: Prlfa<X<b]=F, (b)- F, [ﬁ]

Pr[X>x]=1-F,(x)

Def. 10 Probability Density Function (pdf) fx(x), if it exists, is defined
as a derivative of Fy(x).

consequently: - ,

Note:  fy(x) is called “density of probability” at point x, since the probability that X
is in a small interval in the vicinity of x is approximately fy(x)-x.

Example: Take the sample space as the set of ordered pairs (d,dg), where d; € {1,2,3,4,5, 6}
(e.g.. throwing of two dice of different color), We could define the random variable S as the
function which returns the sum of the numbers which the dice show, Hence, the pair (2, 3)
will be mapped by S to the value 5,

Given some random variable X, we can use it to define particular events related to it, Most
useful is going to be the following consideration: Given some specific value x, which elemen-
tary events will be mapped by the random variable onto this particular value z?

Example: Take the random variable S defined above. Which events are mapped by S onto
the value 47 Answer: (1,3). (2.2), and (3,1). Hence, since there are 36 elementary events,
the probability of finding an event which is mapped onto the value 4 is 3/36 = 1/12. In more
colloquial terms: The probability of getting the sum 4 when throwing two dice is 1/12!

example: cdf & pdf of a continuous r.v.
F(x) fx) |
1 2 3 i ; 1 2 3 ; ;
example: cdf & pmf (prob. mass func.) of a discrete r.v.
F(x) f(x)
.
.
T
- trrr
1 2 3 4 [T T X



We are often concerned with some characteristic of a random variable rather than
the entire distribution:

Def, 11 mean of continuous r.v.

ElX]=y, = T[x-fx (x)dx

EIX]=Y k-Prix=K)

Def. 12 mean of discrete r.v. ™

E[a-X]=a-E[X] E[X+ Y]=E[X]+E[Y]

Def, 13 variance (dispersion around mean) VarD(]:E[(X—ux)z] =E[X2]—Ux2

Def, 14 standard deviation 0, =4/ Var[X]

Var[a-X]=a’ - Var[X]

Example: For the random variable S defined above, the probability distribution wg(x)
looks like this. It is zero everywhere, except for the case whenz € {2,3,4,5,6,7,8,9, 10,11, 12},

2 —1/36~:0.0278
3 —2/36~0.0556

Note that this probability distribution is normalized:

1
Zu‘s[:n) =1.
n=2

5 —4/36=:0.1111

ws 4 T —0/36=:0.1667
8 —5/36=:0.1389
0 —4/36=0.1111
10—3/36~0.0833
11-—2/36~0.0556
12—1/36~0.0278

=
I

12
Z n ws(n)
n=2

9 3 4 5 6 5 4 3 2 1
0 b3 A B b b g T g B 0 4 10 11 19—
% 7% 3636 0% a6 036 3636 33
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Second example: A friend suggests the following “game™; He will flip a coin and we count,
how often we get successive “heads” (starting with the first throw!). If we getn heads, he will
pay us i Buro. He demands that we pay a price oI 2 Euro 1o hum in order 1o play the game.

We could get tremendously rich that way, for just 1 Euro! Should we do this?
Let's first say that V is the random variable which counts how often we had “head” in a
row, starting from the first throw. What is the probability distribution of N7 Evidently, the

probability for getting no head at all (N = 0, the series right away starts with a tail) is 1/2.

So with probability 1/2 we don’t get anything. We will get exactly | head if the first throw is
a head and the second is a tail, so the probability is 1 /4. Hence, the probability for exactly n

heads in a row at the beginning is

1
Qn+1'

wy(n) =

This is normalized:

oc

n=0
And the expectation value therefore is

.
(N) = Z nwy(n)
n=0
.

= Z n 2~(n+1)

n=0
1.1 1

= 0%+1_—+2—+3—+

4 8 16

o111
Z-u;\:[\ﬂ)=3+__—1+§+~-

._1i+‘.‘

32

(2,22

)



Example: direction of a vector in a 2D space

Let's suppose we have another random variable x=cos?8), and we want to
compute the expected value of x, i.e. <x> = E(x)

21 21
(x>= [ x(0) £,6) do= [ cos’(4) = do=m
0

U



