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PART 0 Introduction to statistical mechanics



  

-Statistical mechanics: is the tool to link  macroscopic physics with 
microscopic physics (quantum physics).

-The aim is to explain the macroscopic properties of the matter from the 
microscopic properties of atoms and molecules, e.g.

- Specific heat.
- Transport coefficients: viscosity, etc.
- Curie Temperature for a magnet.
- State equation for a gas. (P,V,T).
- Thermodynamics’ laws.
- Radial distribution of stars.

-The field of statistical mechanics is enormous, e.g. :
- Gas in a container, theory of gases.
- Behaviour of photons: bulb, laser, etc.
- Atoms in a crystal.
- Galaxies and stars.
- Cars in a high-way.  
- Chemical reactions, from the most simple to the most complex like BZ.  



  

-The observed macroscopic physics is a consequence of the microscopic 
physics when there are many particles in the system. 

-In macroscopic systems, the number of particles is enormous:

-22.4litres at NC = 6*1023 molecules.
-1µm3  at NC = 3*107 molecules .

- WE NEED TO USE STATISTICS METHODS TO HANDLE WITH THESE 
SYSTEMS!!!   It is impossible to deal with each one of the particles in the 
system at an individual level.

- What makes the study of the behavior of these systems non-trivial are 
the interactions among the particles, and the interaction of the particles 
with external fields. This can lead for instance to phase transitions, 
symmetry breaking of the temporal inversion, which cannot be explained 
as a sum of the parts that form the system.



  

 - - History of the statistical mechanics -History of the statistical mechanics -

•Forerunner: kinetic theory of gases  Bernoulli (1738), Herapath (1821), 
Joule (1851)   Pressure is due to the motion of particles.

• Clausius (1857)  ideal gas law. Concept of mean free path  first to 
analyze transport phenomena.

• Maxwell (1860)  distribution of molecular speeds. Maxwell’s transport 
equation.

•Boltzmann (1868)  distrib. law for polyatomic gases (aka MB-
distribution). Boltzmann factor exp(-βε). Equipartition theorem. H-
theorem. How to compute entropy. Transport equation.



  

• Ensemble theory  p,q,,phase point, phase space and trajectories. 
Mental copies. Density function.

•Maxwell (1879) & Boltzmann (1871)  first to use the idea of ensambles.

•Gibbs (1902)  makes the tool more robust, general and appealing. 
Relates it to Lagrange’s and Hamilton’s equations of motion.

• Planck (1900), Einstein (1905), Compton (1923)  quantum leap.

• Bose (1924)  Black body radiation = gas of photons.  Photons are 
indistinguishable particles (aka bosons).

• Einstein (1924)  Bose-Einstein statistics. BEC.

• Fermi (1926)  Some particles cannot occupy the same state. Fermi-
Dirac statistics. These kind of parfticles are distinguisable (fermions).

• Sommerfeld (1928)  Theory of metals.



  

• Reformulation of ensemble theory  need of adapting it to the quantum era.

• Landau, von Neumann & Pauli (1927)  density matrix.

• Belinfante & Pauli (1939)  ah!, the spins determines if particles are bosons 
or fermions (distinguishable or indistinguishable  particles).

• So at the beginnings of the 40’s the statistical mechanics reached its mature 
age.

• From 40’s to the 2007: many notorious works but mostly concerned with the 
development or perfection of mathematical techniques. The era of the 
computers arise and make even more fruitful the research on statistical 
physics. But all this  is fish from another kettle 

  … to be continue …
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PART 1 The theory of probability
Several of the plots in this lesson have been obtained from:  
http://www.site.uottawa.ca/~nvlajic/ProbabilityTutorial.pdf,  by N. Vlajic

http://www.site.uottawa.ca/~nvlajic/ProbabilityTutorial.pdf


  

Defining probability:

PA∪B =PA PB−PA∩B 

-There are many probabilities, i.e., many 
functions Pr that satisfy the 3 axioms. Using 
one of them implies to identify  the physical 
system with the particular behavior implicit in 
the function Pr . Example tossing a fair or a 
biased coin.
-One of this functions (for finite sets) is    

Pr A =
cardinal of A
cardinal of 

which leads to the ‘famous way’ of computing 

probabilities for a given event    

but probabilities are much more than the 

previous formula !!! …    



  



  

Pr AB ≡Pr A∩B

- Bayes’ Theorem:

PB j∣A =
PA∣B j  PB j 

∑
i=1

N

P A∣Bi  PBi 

-Why is Bayes’ theorem important?    suppose that we have two events, where A is the consequence, and B is the 
cause which in fact it stands for several different possible reasons labeled B1,B2, …Bi,…BN.
 
- It can happen that it is easy to know P(A|Bi) but we would like to know the reverse P(Bj|A). Bayer’s theorem is then 
very helpful, and does the same work that doing a tree diagram which can be very tedious if the number of B causes is 
large.



  



  

-Binomial probability (or Bernoulli’s experiment):Binomial probability (or Bernoulli’s experiment):

* We have an experiment in which can happen A or Ac.\
* A has associated a probability p.
* Ac has associated a probability q=1-p.
* Repeating the experiment does not change neither p nor q.

we wonder: which is the probability that after doing N of such experiments,
In k of them the event A has happened ?

Bernoulli solved that problem 
long time ago:

PN k =Nk  pk qN−k

Nk = N!
k ! N−k ! n!~ 2 π n nn e−n

Combinatorial numbers Striling’s approach



  



  



  

Example: direction of a vector in a 2D space

θ

θ∈[0,2π ]

f θ  θ = 1
2π

¿x >=∫
0

2π

x θ  f θ  θ  dθ =∫
0

2π

cos2θ 
1
2π

dθ= π

Let’s suppose we have another random variable x=cos2(θ), and  we want to 
compute the expected value of x, i.e. <x> = E(x)


