Worksheet 5: Thermostats, Monte Carlo

Michael Kuron Georg Rempfer Florian Weik

January 11, 2017
Institute for Computational Physics, University of Stuttgart

Contents

1 General Remarks 1

2 Thermostats 2
 2.1 Andersen Thermostat .. 2
 2.2 Berendsen Thermostat .. 2

3 Simple Sampling – Integration 3

4 Importance Sampling – Metropolis-Hastings Algorithm 4

5 Simulating the Ising Model 6
 5.1 Exact Summation ... 7
 5.2 Monte-Carlo Simulation 7

1 General Remarks

• Deadline for the report is Monday, January 23, 2017
• On this worksheet, you can achieve a maximum of 19 points.
• The report should be written as though it would be read by a fellow student who attends to the lecture, but does not do the tutorials.
• To hand in your report, send it to your tutor via email
 – Florian (fweik@icp.uni-stuttgart.de) (Thursday 11:30-13:00)
 – Michael (mkuron@icp.uni-stuttgart.de) (Friday 14:00-15:30)
• Please attach the report to the email. For the report itself, please use the PDF format (we will not accept MS Word doc/docx files!). Include graphs and images into the report.

• If the task is to write a program, please attach the source code of the program, so that we can test it ourselves.

• The report should be 5–10 pages long. We recommend using \LaTeX. A good template for a report is available online.

• The worksheets are to be solved in groups of two or three people.

The first part of this worksheet contains questions about different thermostats. In the second part, you will employ the Monte-Carlo method to integrate a function and to simulate the Ising model.

2 Thermostats

2.1 Andersen Thermostat

In the lecture on thermostats you learned about the Andersen thermostat, where an NVT ensemble is generated by replacing the velocities of selected particles by a random velocity drawn from a Maxwell-Boltzmann distribution corresponding to the desired temperature T. This resembles the system’s coupling to an infinite heat bath at temperature T.

The probability P for a particle to undergo this procedure during a time step Δt is $P(\nu, \Delta t) = \nu \Delta t$, where ν is the frequency of (virtual) stochastic collisions with the heat bath.

Task (1 point)
Can a simulation with an Anderson thermostat in general be used to determine dynamical properties of a system, e.g. diffusion coefficients?

2.2 Berendsen Thermostat

Another well-known thermostat is the Berendsen thermostat. However, this method doesn’t yield the canonical ensemble exactly. In order to control temperature, velocities are scaled in every time step by a factor λ with

$$\lambda = \sqrt{1 + \frac{\Delta t}{\tau T} \left(\frac{T_{des}}{T_{act}} - 1 \right)} ,$$

where Δt is the time step of the simulation, T_{des} and T_{act} the desired and actual system temperature, respectively, and τT is a constant.
Task (2 points)

- Show that this scaling is equivalent to a temperature coupling of the system with a heat bath at $T = T_{des}$ with the heat flux J and heat transfer coefficient α:

$$J = \alpha (T_{des} - T_{act})$$ (2)

- Given an arbitrary configuration with initial temperature T_i, how does T_{act} evolve over time under the Berendsen thermostat?

(Taken from: Frenkel, Smit: Understanding Molecular Simulation)

3 Simple Sampling – Integration

In general, the Monte-Carlo method can be used to compute expectation values of the type

$$\langle A \rangle = \frac{\int_{\Phi} A(\phi)P(\phi)d\phi}{\int P(\phi)d\phi}$$ (3)

where $A(\phi)$ is an arbitrary function and $P(\phi)$ is the a-priori probability distribution of the states ϕ.

In statistical physics, Φ is the set of possible states of a system, P is the Boltzmann distribution $P(\phi) = e^{-\beta H(\phi)}$ and $A(\phi)$ is an observable of the system.

The fundamental idea of the Monte-Carlo method is to approximate equation (3) by replacing the continuous integrals by discrete sums over randomly generated, uniformly distributed states of the system:

$$\langle A \rangle \approx \frac{\sum_{i} A(\phi_i)P(\phi_i)}{\sum_{i} P(\phi_i)}, \{\phi_i\} \text{ uniformly distributed}$$ (4)

This is the so-called simple sampling.

This method is employed for the Monte-Carlo integration of functions. In that case, we set $P(\phi) = 1$ and get

$$\int_{a}^{b} f(x)dx \approx \frac{b - a}{N} \sum_{i} f(x_i), \{x_i\} \in [a,b] \text{ uniformly distributed}$$ (5)

The first task is to integrate the Runge function $f(x)$ on the interval $[-5, 5]$:

$$f(x) = \frac{1}{1 + x^2}$$ (6)

$$I = \int_{-5}^{5} \frac{1}{1 + x^2} dx$$ (7)
Task (1 point)

- Write a Python function runge(x) that computes the runge function \(f(x) \).
- Plot \(f(x) \) on the interval \([-5, 5]\).
- Write a function that computes the exact solution of \(I \).

Hint

\[
\int \frac{1}{1 + x^2} = \arctan(x)
\]

Task (3 points)

- Write a Python function simple_sampling(f, a, b, N) that performs \(N \) steps of a simple sampling Monte-Carlo integration of a Python function \(f \) in the interval \([a, b]\). The function should return the estimate of the integration as well as the statistical error of the estimate (i.e. the error computed by error estimation).
- Write a Python program that uses the function to compute \(I \) for \(N = 2^i \) where \(2 \leq i \leq 20 \).
- Compute the actual error of the integration (i.e. the difference between the computed value and the exact solution).
- Plot the actual error and the statistical error against the number of integration steps \(N \).

Hint To compute the statistical error of the estimate, use the fact that the different samples \(f(x_i) \) are uncorrelated in the case of simple sampling.

4 Importance Sampling – Metropolis-Hastings Algorithm

Unfortunately, simple sampling is often very ineffective. For example, imagine that \(\phi \) is the state of a system of Lennard-Jones particles with a not-too-low density (i.e. \(\phi \) contains the coordinates of all particles). In simple sampling, one would try to randomly generate the positions of all particles. In that case, the probability to generate a state with a very high energy (where particles overlap) is very high, and accordingly \(e^{-\beta H(\phi)} \) is very small. Only when a state of the system is generated where not all particles overlap, this will significantly contribute to the mean value.

To overcome this problem, one can use *importance sampling*. In this method, the idea is to generate the states \(\{\phi_i\} \) of the system according to the probability distribution \(P(\phi) \).
When this can be achieved, equation (4) can be rewritten as

\[\langle A \rangle \approx \frac{1}{N} \sum_{i} A(\phi_i), \{\phi_i\} \text{ P-distributed} \] (8)

One algorithm to generate samples from a given probability distribution \(P(\phi)\) is the Metropolis-Hastings algorithm. We do not derive the algorithm here, but only define it. The algorithm generates a sequence of states \(\{\phi_i\}\) that is distributed according to \(P(\phi)\) in the limit of many steps.

Assume that we have given a state \(\phi_i\) of the system. Then the next state in the sequence can be generated by the following steps:

1. Perform a trial move, i.e. propose a new state \(\phi'\) according to some prescription (see below).
2. Draw a uniformly distributed random number \(r \in [0,1]\).
3. If \(r < \min(1, \frac{P(\phi')}{P(\phi)})\), accept the new state, otherwise reject it.
4. When the state is accepted, the next state is \(\phi_{i+1} = \phi'\).
5. When the state is rejected, the next state is \(\phi_{i+1} = \phi_i\).

Examples for a trial move are:

- To generate \(x\)-values with a given distribution \(P(x)\), a trial move could be to simply add a random number \(r \in [-\Delta x, +\Delta x]\) to \(x\).
- In the Ising model, the trial move could be to randomly flip one or more spins.
- In a many-particle system, the trial move could be to randomly choose a particle and move it to a random position in a box around the last particle position.

The interesting thing about Monte-Carlo simulations is that you have great freedom in how a trial move can look like. There are only two necessary conditions for the trial move:

1. The trial moves have to be symmetric, i.e. \(P_{\text{trial}}(\phi_i \rightarrow \phi_j) = P_{\text{trial}}(\phi_j \rightarrow \phi_i)\) where \(P_{\text{trial}}(\phi_i \rightarrow \phi_j)\) is the probability to propose state \(\phi_j\) when the initial state is \(\phi_i\).
2. The trial moves have to be “ergodic”, i.e. it must be possible to reach any possible state of the system via a finite sequence of trial moves.

The goal of the algorithm is to explore the complete phase space as quickly as possible. Therefore, in practice, not all possible trial moves are useful.

One important property of the algorithm to keep in mind is the acceptance rate, i.e. the probability that a trial move is actually accepted. On the one hand, when a trial move changes the state very much, the acceptance rate may become very low, so that the system state changes only very rarely, and it takes a very long time for the system to get
anywhere. An extreme example for this would be to simply generate a new random state in every step (as in simple sampling). On the other hand, when a trial move proposes a state that is very similar to the previous state, the acceptance rate may become close to 1, however, the state still does change only very slowly, as the trial moves are very small. To get the fastest sampling of the phase space, the trial moves should be somewhere in between. In general, keeping the acceptance rate at \(\approx 30\% \) is a good idea.

Many trial moves have a parameter that allows to tune the acceptance rate, as for example the parameter \(\Delta x \) in the first example above.

Task (4 points)

- Write a Python function `metropolis(N,P,trial_move,phi0)` that uses the Metropolis-Hastings-algorithm to generate \(N \) samples from the probability distribution \(P \). \(\phi_0 \) is the initial state, and `trial_move` is a function that proposes a new state given the previous state \(\phi \). The function shall return the generated states in a Python list as well as the acceptance rate.

- Write a Python program that uses the function to generate \(N \) samples of \(x \) that are distributed according to the Runge function. The trial move should be a function that adds a uniformly distributed random number \(r \in [-\Delta x, +\Delta x] \) to \(x \).

- Generate \(4 \times 100000 \) samples of the Runge function with move ranges \(\Delta x \in \{0.1, 1.0, 10.0, 100.0\} \).

- Plot a distribution histogram with 100 bins in the range \([-5, 5]\) of the Metropolis samples and compare them to the Runge function.

- Which move range \(\Delta x \) gives the best results?

- What is the acceptance rate in that case?

Hint

To generate the histogram, use the Python function `numpy.matplotlib.pyplot.hist`.

5 Simulating the Ising Model

In the following, we will perform simulations of the two-dimensional Ising model on a \((L \times L)\) square lattice. \(\sigma_{i,j} \) denotes the spin at lattice position \((i,j)\).

The (total) energy of the system is defined by

\[
E = \frac{1}{2} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} E_{i,j} \tag{9}
\]

\[
E_{i,j} = -\sigma_{i,j} (\sigma_{i-1,j} + \sigma_{i+1,j} + \sigma_{i,j-1} + \sigma_{i,j+1}) \tag{10}
\]
The system uses periodic boundary conditions, \(\text{i.e.} \)
\[
\sigma_{-1,j} = \sigma_{L-1,j} \quad \sigma_{L,j} = \sigma_{0,j} \\
\sigma_{i,-1} = \sigma_{i,L-1} \quad \sigma_{i,L} = \sigma_{i,0}
\]
As an observable, we are interested in the (mean) energy per site \(e \), which is defined by
\[
e = \langle \frac{E}{L^2} \rangle
\]
and the (mean) magnetization per site \(m \)
\[
m = \langle |\mu| \rangle \quad (11)
\]
\[
\mu = \frac{1}{L^2} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \sigma_{i,j} \quad (12)
\]

5.1 Exact Summation

Task (4 points)

- Implement a program that computes the value of the mean energy per site \(e \) and the mean magnetization per site \(m \) of the two-dimensional Ising model with \((4 \times 4)\)-spins by exact summation for a given temperature \(T \).
- Plot \(e \) and \(m \) against the temperature \(T \) where \(T \in \{1.0, 1.1, \ldots, 4.9, 5.0\} \).

5.2 Monte-Carlo Simulation

The program that you will write in this task will be reused in the next worksheet, so write it cleanly and document it well.

The task is to write and use a program that does a Metropolis MC simulation of the two-dimensional Ising model. The trial move should be to flip a randomly chosen spin.

Task (4 points)

- Implement a Python program that computes the mean energy per site \(\langle e \rangle \) and mean magnetization per site \(\langle m \rangle \) of the two-dimensional Ising model with \((L \times L)\)-spins via the Metropolis Monte-Carlo algorithm.
- Compute and plot the mean magnetization and the mean energy of the \((4 \times 4)\)-Ising model with 10000 Metropolis Monte-Carlo steps at temperature \(T \) where \(T \in \{1.0, 1.1, \ldots, 4.9, 5.0\} \).
- Compare the results to the results of the exact summation.
Hints Note that it is not necessary to recompute the total energy of the system in every step. Instead, you can compute the change of the energy caused by a single spin flip with help of equation (10).