Physik auf dem Computer SS 2013

Worksheet 3: Taylor Series, Interpolating
Polynomial and Splines

May 3, 2013

General Remarks

e Deadline is Wednesday, 8th May 2013, 10:00

e On this worksheet, you can achieve a maximum of 10 points.

e To hand in your solutions, send an email to
— Olaf (olenz@icp.uni-stuttgart.de; Wednesday, 14:00-15:30)
— Elena (minina@icp.uni-stuttgart.de; Wednesday, 15:45-17:15)
— Tobias (richter@icp.uni-stuttgart.de; Friday, 15:45-17:15)

e Attach all required files to the mailing. If asked to write a program, attach the
source code of the program. If asked for a text, send it as PDF or in the text
format. We will not accept MS Word files!

e The worksheets are to be solved in groups of two or three people.

e The tutorials take place in the CIP-Pool of the ICP in Allmandring 3.

Throughout the worksheet, the following functions are used on the specified domains:

Name Definition Domain
Sine Function f(z) =sinx [0, 27]
Runge Function g(x) = 1+le [—5, 5]
Lennard-Jones Function | h(z) = 2712 — 276 | [1, 5]

In this worksheet, different callable objects are used. If a Python class defines a method
__call__(self,args), it is possible to call an instance of the object like a function:

>>> class HelloWorld:

def _ _call__(self, who):
5 o print "Hello", who, "!"
>>> hello = HelloWorld ()
>>> hello("0Olaf")
Hello 0Olaf !

Task 3.1 (3 points): Taylor Polynomials

In this task, you are entitled to plot the Taylor polynomials of the different functions.

e 3.1.1 (2 points) Calculate the coefficients of the truncated Taylor series of the sine
function f(x) at zp = 0, the Runge function g(x) at o = 0 and the Lennard-Jones
function at o = 1 up to 6th degree. Use the Python class numpy.poly1d to define
the k-th order Taylor polynomials of f(x), g(z) and h(z) for k € {3,5,10} at
arbitrary x.

e 3.1.2 (1 point) For each of the functions f(z), g(z) and h(x), create a plot that
shows the function and their respective k-th degree Taylor polynomials (k €
{3,5,10}) on the specifed domain.

Hints
e You may use Mathematica or Wolfram alpha to compute the Taylor series.

e The Python class polyid is used as follows:

f is the polynomial f(xz) = Sxxxx2 + 2%z + 1
Note the order of the coefficients!

f = numpy.poly1d([3,2,1])

Compute the wvalue of the polynomial at x=42
print £ (42)

e Take care to handle the argument of the Taylor polynomial of h(z) correctly!
Task 3.2 (4 points): Interpolating Polynomials

Now you should plot interpolating polynomials of the three functions.

e 3.2.1 (1 point) For each of the functions f(x), g(z) and h(z), create a plot over
the specified domain that shows the function and its k-th degree interpolating
polynomials ((k € {3,5,10}) for equidistant supporting points. Use the Python
function scipy.interpolate.lagrange to do so.

e 3.2.2 (2 points) Write a Python program that does the same as the script from
the previous task (3.2.1). However, this time you shall implement your own class
NewtonInterpolation that does the interpolation using Newton’s representation.
The class shall define two methods:

— __init__(self,x,y) does the same as neville() from the lecture script and
stores the x and -y in class variables

— __call__(self,x) does the same as horner () from the lecture script but does
not require the parameters gamma and x but uses the stored class variables
instead

e 3.2.3 (1 points) Modify the Python program either from task 3.2.1 or 3.2.2 such
that it computes the interpolating polynomials at the Chebyshev nodes and create
the same plots as in the previous tasks.

Task 3.3 (3 points): Spline Interpolation

In this task, you are to spline interpolate the functions.

e 3.3.1 (1 point) For each of the functions f(x), g(z) and h(x), create a plot over the
specified domain that shows the function and an interpolating cubic spline with
k € {3,5,10} equidistant supporting points.
Use the class scipy.interpolate.interpld to do so.

e 3.3.2 (2 points) Write a class SplineInterpolation that implements cubic spline in-

terpolation. As in previous tasks, the class shall provide the method __init__(self,args)

to initialize the interpolation and __call__(self,x) to compute the value of the
interpolating function at x. On the boundaries, set the second derivative of the
spline to 0. Note that the splines in this class will not be identical to the splines
in the previous task, as SciPy uses differemt boundary conditions.

Hints The method SplineInterpolation.__init__() has to compute the spline coeffi-
cients by first generating the defining linear equations (eq. (3.26) in the lecture script)
and then solving them using scipy.linalg.solve.

