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General remarks
• Deadline for the report is Wednesday, 15 May 2019, 13:00.

• In this worksheet, you can get a maximum of 15 points.

• The report should be written as though it would be read by a fellow
student who attends the lecture, but does not do the tutorials.

• To hand in your report, send it to your tutor via email: Maofeng Dou
(mdou@icp.uni-stuttgart.de).

• For the report, please use the PDF format (unfortunately, MS Word
doc/docx files are not accepted) and include graphs and images. We
recommend using LATEX. A good template for a report is available
online.

• The report should be 5–10 pages long.

• The worksheets are to be solved in groups of two or three people.
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1 Introduction

In this worksheet, you will first tackle a couple of theoretical task concern-
ing density functional theory (DFT). The files required for this tutorial can
be found in the archive templates.zip which can be downloaded from the
lecture’s homepage.

2 Short Questions - short answers (5 points)

Task (5 points)

• Q1: What do the Kohn-Sham equations describe?

• Q2: When is it useful to use DFT compared to Hartree-Fock? Give
reasons for your choice.

• Q3: What is the main difference between LDA and GGA density
functionals?

• Q4: Why can regular LDA- or GGA-type density functionals not
describe long-range van-der-Waals type interactions?

• Q5: Which minimum output frequency is needed to describe a vi-
brationalmode of 3000cm1?

3 Local spin-density approximation and Thomas-

Fermi energy of hydrogen atom (5 points)

The local spin-density (LSD) approximation introduces a new variable to
our density functional, namely the spin density m(r). The spin density is
defined as the difference between individual densities for α and β spin as
m(r) = ρα(r) − ρβ(r). Introducing spin densities allows for a more complete
description of the physics in our systems. It is also necessary to correctly de-
scribe systems with unpaired electrons, i.e., radicals like the hydrogen atom.
The corresponding kinetic energy is defined as:

Ts[ρ
α, ρβ] =

∑
iσ

∫
drφ∗

iσ(r)(−1

2
∇2)φiσ(r), (1)

2



where φiσ are spatial parts to the spin orbitals ψ(rs) = φiσ(r)σ(s) and the
σ(s) ares spin eigenfunctions. Here and throughout the text, we use atomic
units. We write for convenience T 0

s [ρ] = Ts[
1
2
ρ, 1

2
ρ]. The superscript 0 indi-

cates completely paired spin densities, i.e., m(r = 0) everywhere. This kinetic
energy is, however, not generally equal to the exact Kohn-Sham kinetic en-
ergy Ts[ρ], Ts[ρ] 6= T 0

s [ρ]. A specific example is the case of an odd number
of electrons. For all of our following calculations, we use the Thomas-Fermi
density functional. It is one of the earliest density functional theoretical
descriptions available. The Thomas-Fermi kinetic energy density functional
TTF for an electron density ρ(r) (without spin)is given by:

TTF = CF

∫
drρ

5
3 r, (2)

with

CF =
3

10
(3π2)

2
3 . (3)

Task (5 points)

• Derive the general formula for the kinetic energy functional in
terms of kinetic energies for the spin-unpolarized case: Ts[ρ

α, ρβ] =
1
2
T 0
s [2ρα] + 1

2
T 0
s [2ρβ].

• Use the Thomas-Fermi kinetic-energy density functional as an ap-
proximation to T 0

s [ρα/β] and calculate the energy of a hydrogen atom
with in the local density approximation and the local spin-density
approximation.Note that for the 1s ground state of the hydrogen
atom

∫
ρ
5/3
1s r = 0.1007 . Compare your value to the exact value for

the hydrogen atom.

4 Quantum mechanical calculations using SIESTA

(13 points)

We already calculated the properties of molecules using Hartree-Fock ap-
proximation in the worksheet 1. In this one, we will calculate the electronic
structures of different solid state materials by means of density functional
theory using SIESTA.
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4.1 Running the simulations

4.1.1 Prepare files for simulation

The files required for simulation include input file (.fdf) and pseudopotential
file (.psf). Examples for diamond are provided in the templates.zip archive.
You will see input files for diamond (diamond-opt.fdf, diamond-structure.fdf,
C-basis.fdf, and C.psf), SIESTA executable (siesta) and post-processing tools
(utils). For graphene and graphite, only the structure files are provided,
please adapt the input files of diamond to that of graphene and graphite
yourself.

The main input file (.fdf) contains all the simulations parameters, like
atomic coordinates, basis set, functional, k-mesh, cutoff and so on in the
flexible data format (fdf). Brief expiation of the input parameters is provided
in the .pdf file. Please note:

• fdf labels are case insensitive, and characters - . in a data label are
ignored. Thus, LatticeConstant and lattice constant represent the same
label.

• All text following the # character is taken as comment.

• Logical values can be specified as T, true, .true., yes, F, false, .false.,
no. Blank is also equivalent to true.

• The input files allow the inclusion of other fdf files to keep a struc-
tured and simple to read fdf file. In the example files, we split the fdf
file into diamond-structure.fdf which contains the information about
crystal structure, C-basis.fdf which contains information about the ba-
sis set and diamond-scf.fdf file which contains the rest for SCF simu-
lation. The diamond-structure.fdf and C-basis.fdf are called through
%include block in the diamond-scf.fdf file.

For the diamond-structure.fdf file, the important parameters are:

• LatticeConstant: this is to define the scale of the lattice vectors.

• LatticeVectors: they are read as a matrix CELL, each vector being one
line, e.g. first, second, and third line define the vector of a, b, c of
diamond, respectively (diamond is cubic, so a=b=c).

• NumberOfSpecies: number of different atomic species in the simulation
(e.g. 1 for diamond).
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• NumberOfAtoms: number of atoms in the simulation (e.g., 8 for dia-
mond).

• ChemicalSpeciesLabel: specifies the different chemical species that are
present (e.g. first number 1 is the species number, the second one is
the atomic number, and the last one is the desired label).

• AtomicCoordinatesFormat: specify the format of the atomic positions
in input, in our structure files, all coordinates are in the unit of Åand
in cartesian coordinate.

• AtomicCoordinatesAndAtomicSpecies: specify the positions and Carte-
sian coordinate of atoms.

For details of the input and output parameters, please refer to the SIESTA
manual. The manual for SIESTA can be found here:

https://departments.icmab.es/leem/siesta/Documentation/Manuals/

siesta-4.0.pdf

The pseudopotential file for C (C.psf) is in the template, you can also
download it from the SIESTA website:

https://departments.icmab.es/leem/siesta/Databases/Pseudopotentials/

periodictable-gga-abinit.html

4.1.2 Run SIESTA

The SIESTA program is installed at directory /group/allatom/siesta. For
convenient, the SIESTA executable and tools to analyse results are provided
in template. Run SIESTA executable by typing:

siesta < diamond-scf.fdf > diamond-scf.out

Here, diamond-scf.fdf and diamond-scf.out is the name of the input and
output file, respectively. The version is compiled without support for MPI,
thus it runs in a single thread only.

4.1.3 Output files

SIESTA generates several output files, the most important ones for our tu-
torial are:

• *.out contains the output information.

• *.EIG contains the eigenvalues of the Kohn-Sham Hamiltonian.
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• *.DM contains the density matrix to allow a restart.

• *.DOS density of states.

• *.xyz contains coordinates, easy to read by VMD, VESTA or others.

• *.ANI contains the coordinates of every MD step.

• *.bands contains the k point coordinates (in a.u.) and the correspond-
ing band energies (in eV).

• *.RHO valence pseudocharge density at the mesh.

4.1.4 Restart

SIESTA is able to restart from not finished simulations or to calculate some
further properties using an existing simulation. Therefore one has to define,
in the fdf file, which files it should use, like

MD. UseSaveXV true
which tells SIESTA to overwrite the atomic coordinates defined in the fdf

file with, if present, the coordinates written in the XV file.

4.2 DFT and solid state materials

Solid state materials include metals, semiconductors, ceramics and molecule
crystals. How the structures of these materials affect their electrical, mechan-
ical, optical, and magnetic properties, is what solid state researchers seek to
understand. In addition, solids at the nanoscale behave differently compared
to that in larger dimensions.

Elemental carbon materials take numerous forms including graphite, car-
bon nanotube, graphene, carbon black, activated carbon, fullerene and dia-
mond. These forms differ greatly in the structure, properties, and fabrication
method. The applications of these carbon forms include electronic, electro-
magnetic, electrochemical, environmental and biomedical applications.

In this section you will choose diamond and graphene as example, learn
how to calculate the electronic structures of solid state materials and under-
stand how the crystalline structures and dimensions affect their electronic
structures.
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Task (6 points)

• Optimize the lattice constant of diamond using PBE funcitonal and
compare with the experimental measurement.

• With the optimized lattice constant, calculate and plot the density of
state (DOS) of diamond (use the Fermi level as reference in plotting).

• Extract the calculated band-gap energy (Eg) and compared it with
the experimental measurement. Explain why PBE functional under-
estimates the band-gap of diamond (shortly in your own words).

Note:
SIESTA uses a finite 3D grid for the calculation of some integrals and

the representation of charge densities and potentials. Its fineness is deter-
mined by its plane-wave cutoff (MeshCutoff in diamond-scf.fdf). It means
that all periodic plane waves with kinetic energy lower than this cutoff can
be represented in the grid without aliasing. In turn, this implies that if a
function (e.g. the density or the effective potential) is an expansion of only
these plane waves, it can be Fourier transformed back and forth without any
approximation.

In addition, unlike the molecules we calculated in worksheet 1, the mate-
rials to be calculated in this worksheet are all periodic systems (at least in one
dimension). Therefore, integrals in real space over the system are replaced
by integrals over the first Brillouin zone in reciprocal space using Bloch’s
theorem. In SIESTA (and most DFT softwares for solid), such integrals are
performed by summing the values of the integrated (e.g., the charge density)
at a finite number of points in the Brillouin zone, called the k-point mesh.
Therefore, choosing a sufficiently dense mesh of integration points and cutoff
energy is crucial for the convergence of the results. It is recommended to
perform convergence test before conducting your simulations for
the task, for example:

• Perform a series of self-consistent calculation (also called static calcula-
tion) with different cutoff energy (Meshcutoff in the diamond-scf.fdf),
e.g. from 50 to 350 Ry with increments of 50 Ry and converge to total
energy to about 0.01 eV/atom.

• With the converged cutoff energy, perform calculations with different
k-mesh (%kgrid Monkhorst Pack block) and converge to total energy
to about 0.01 eV/atom.
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Hits:

• There are different ways to optimize the lattice constant, we recommend
use the equation-of-state approach. To do so, you need to perform a
series of calculations at different volumes for a crystal (diamond is a
cubic crystal, so you can simply change the lattice constant a within
the range of ±5%). Thereafter, fit the energy-vs-volume curves with
either polynomial of various degree or other types of equation of state
to obtain the corresponding equilibrium volume and lattice constant.

• For DOS, generally a finer grid of k-mesh is required, it is therefore
more efficient to restart from a SCF calculation, for details, please see
page 75 on the manual of SIESTA.

Task (7 points)

• Calculate the binding energy of bilayer-graphene (assume AB stack-
ing) and graphite using PBE functional and compare the differences.

• Repeat the task of binding energy calculation with van der Waals
functional and explain the differences of the results from PBE and
vdW functional.

• Calculate the DOS of graphene, bilayer-graphene, and graphite using
vdW functional and explain the difference (shortly in your works).

Notes:

• Since you already learned how to perform convergence test in the pre-
vious task, in this task, the lattice constants and atom positions of
graphene and graphite in the graphene.xyz and graphite.xyz are al-
ready optimized for you. You do not need to optimize them any more.

• For graphene and bilayer-graphene, the cell size in the direction per-
pendicular to graphene surface should be large enough to avoid the
influences of periodic images.
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