Difference between revisions of "Theses"

From ICPWiki
Jump to navigation Jump to search
Line 121: Line 121:
 
Ansprechpartner: [[Jens Smiatek]] oder [[Julian Michalowsky]]
 
Ansprechpartner: [[Jens Smiatek]] oder [[Julian Michalowsky]]
  
=== Microswimmers in porous networks ===
+
=== pH-induced reversal of phoretic propulsion ===
 
[[w:Self-propelled_particles|Mikroschwimmer oder aktive Kolloide]] sind ein hochaktuelles und spannendes Thema in der Physik der weichen Materie.
 
[[w:Self-propelled_particles|Mikroschwimmer oder aktive Kolloide]] sind ein hochaktuelles und spannendes Thema in der Physik der weichen Materie.
 
Es gibt zahlreiche [[w:Janus_particles|künstliche Realisierungen]] solcher Schwimmer, das natürliche Vorbild für diese sind jedoch stets Bakterien, die sich in Jahrmillionen der Evolution perfekt an ihre biologische Aufgabe angepasst haben.
 
Es gibt zahlreiche [[w:Janus_particles|künstliche Realisierungen]] solcher Schwimmer, das natürliche Vorbild für diese sind jedoch stets Bakterien, die sich in Jahrmillionen der Evolution perfekt an ihre biologische Aufgabe angepasst haben.
<!--Verbesserungen des Verstädnisses der Fortbewegung von Mikroschwimmern können beispielsweise dabei helfen, die Interaktion von Bakterien und Mikroorganismen mit ihrer Umgebung besser zu verstehen und künftig die Entwicklung von Mikromotoren und Methoden für den zielgerichteten Medikamententransport im menschlichen Körper ermöglichen.-->
+
Verbesserungen des Verständnisses der Fortbewegung von Mikroschwimmern können beispielsweise dabei helfen, die Interaktion von Bakterien und Mikroorganismen mit ihrer Umgebung besser zu verstehen und künftig die Entwicklung von Mikromotoren und Methoden für den zielgerichteten Medikamententransport im menschlichen Körper ermöglichen.
Bestimmte Arten von [[w:Microbiologically_induced_calcite_precipitation|Bakterien sondern Kalk ab]] und können somit beispielsweise genutzt werden, um Risse in porösen Materialien wie Beton, Stein oder Knochen zu versiegeln.  
+
Ein bestimmter [https://doi.org/10.1002/adma.201701328 Schwimmer wurde in der Gruppe von Peer Fischer in Stuttgart] entwickelt: eine Silikatkugel wird auf einer Seite mit Titandioxid beschichtet und schwimmt in einer Wasserstoffperoxid-Lösung, wenn sie Ultraviolettstrahlung ausgesetzt ist.
Eine einfache mathematische Beschreibung der Fortbewegung kugelförmiger Schwimmer ist mit dem [[w:Squirmer|Squirmer]]-Modell möglich.
+
Dabei stellt sich heraus, dass die Bewegungsrichtung vom pH-Wert der Lösung abhängig ist.
  
Im Rahmen einer Bachelorarbeit soll eine Porengeometrie in das [http://www.walberla.net/ waLBerla]-Programmpaket geladen werden und es soll untersucht werden, wie sich Squirmer hindurchbewegen und wo sie sich akkumulieren.
+
Im Rahmen einer Bachelorarbeit soll dieser Schwimmer mit Hilfe der [[w:Finite_element_method|Finite-Elemente-Methode]] modelliert werden und untersucht werden, durch welche Antriegseigenschaften die pH-Abhändigkeit zustande kommt. Dafür wird die Software [[w:COMSOL|COMSOL]] verwendet und die elektrokinetischen Gleichungen (Diffusion, Elektrostatik, Hydrodynamik) gelöst.
waLBerla löst mit dem [[w:Lattice Boltzmann methods|Lattice-Boltzmann]]-Algorithmus die [[w:Navier–Stokes equations|Navier-Stokes-Gleichung]]. Es ist in [[w:C++|C++]] geschrieben und für hoch effiziente Simulationen auf Supercomputern geeignet, sodass auch Simulationen großer Systeme oder mit einer hohen Schwimmerdichte möglich sind.
 
  
Ansprechpartner: [[Christian Holm]] oder [[Michael Kuron]]
+
Ansprechpartner: [[Christian Holm]], [[Michael Kuron]] or [[Patrick Kreissl]]
  
<!--Weitere Literatur: <bibentry>elgeti15b</bibentry>-->
+
Weitere Literatur: <bibentry>elgeti15b</bibentry>

Revision as of 15:13, 19 December 2018

If you are looking for topics for a PhD thesis, have a look at Open Positions.

Masterarbeiten germany.png

Masterarbeiten können bei uns in den Bereichen Statistische Physik, Theorie und Simulation poröser Medien, Fraktionale Infinitesimalrechnung Simulation und Theorie weicher Materie durchgeführt werden.

Dies umfasst insbesondere Nukleation, Ferrofluide, Hydrogele sowie Polymere und Biomoleküle. Desweiteren kann sich eine Arbeit aber auch stärker an der Entwicklung von Methoden, Algorithmen und der Simulationssoftware ESPResSo orientieren.

Wer Interesse daran hat, eine Masterarbeit am ICP zu schreiben, der kann Rudolf Hilfer, Christian Holm, Maria Fyta, oder Jens Smiatek kontaktieren, um einen Überblick über die möglichen Themen zu bekommen. Bei Interesse an einem bestimmten der im folgenden genannten Themen kann er direkt einen der unten genannten Ansprechpartner kontaktieren.

Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.


Simulationen zur Leitfähigkeit von Polymerelektrolyten

Ansprechpartner: Christian Holm

Simulationen zur Meerwasserentsalzung mittels Hydrogelen

Ansprechpartner: Christian Holm

Theorien und numerische Methoden für poröse Medien

Ansprechpartner: Rudolf Hilfer

Fraktionale Ableitungen und dielektrische Relaxation

Ansprechpartner: Rudolf Hilfer

Systemgrößenskalierung und Simulation von Phasenübergängen

Ansprechpartner: Rudolf Hilfer

Magnetische Gele

Ansprechpartner: Rudolf Weeber,Christian Holm

Ionische Flüssigkeiten

  • Coarse-grained Modelle für ionische Flüssigkeiten, Ansprechpartner: Christian Holm

Mikrostrukturbildung und Phasenverhalten von kolloidalen Janus-Teilchen

Ansprechpartner: Christian Holm

Implementierung, Verbesserung und Anwendung moderner Simulationsalgorithmen in der Software ESPResSo

Ansprechpartner: Florian Weik

Mehrphasenströmungen in porösen Medien

Ansprechpartner: Rudolf Hilfer

Dreidimensionale Bildverarbeitung

Ansprechpartner: Rudolf Hilfer

Biofunktionalisierte Kohlenstoff Nanostrukturen / Biofunctionalized carbon nanostructures

Ansprechpartner: Maria Fyta

Wechselwirkung von DNA und MoS2 / Interaction of DNA with MoS2

Ansprechpartner: Maria Fyta

Dehnungseffekte auf Kohlenstoff Strukturen / Influence of strain on defective carbon nanostructures

Ansprechpartner: Maria Fyta

Electrophoretically Driven Self-Propelled Colloidal Particles

In this project you will investigate the fascinating non-equilibrium world of active colloids and model self-electrophoretically driven particles. The research into chemically driven active colloids has taken off in the last years, with over a 100 publications in the field per year, compared to only a few 5 years ago. Typically, the particles achieve self-propulsion by decomposing hydrogen peroxide into water and oxygen, thus harvesting chemical energy from their environment and converting this into forward motion. However, the exact mechanism by which the conversion into motion is achieved is still poorly understood. It is speculated that both diffusiophoresis and electrophoresis could play a role, and which of the two effects dominates depends on the materials used and the environmental conditions. In order to address these pressing questions, you will further develop the GPU-based description of diffusiophoretically driven self-propelled particles that is currently available in ESPResSo using C++ and CUDA programming. You will write code to study the self-electrophoretic mechanism and compare your results to those obtained in experimental systems. This is a challenging project and should only be considered by those who have a good understanding of programming and a keen interest in physics.

Contact: Joost de Graaf or Christian Holm

Study of Multiphase Flows using Lattice Boltzmann Method

Many of the flows in engineering applications are multiphase in nature, for example oil companies usually deal with simultaneous flow of oil and water. A detailed insight into the Physics of such flows is important for design of equipment. With the advent of advanced numerical methods and computational resources it has become possible to simulate behavior of such flows and predict their behavior in varied applications. Several numerical methods exist for the simulation of such flows; Lattice Boltzmann Method (LBM) is an alternative method to describe the behavior of fluids at mesoscale. The explicit nature of the LB scheme allows for an excellent scalability on massively parallel supercomputers and its mesoscale nature allows an efficient coupling with particles on a microscale. Within the Collaborative Research Center, SFB1313 of the German Research Foundation (DFG) we are studying transport of charged species in multiphase flows in highly confined geometries (porous media). The SFB involves researchers in various fields including Engineering, Physics and natural sciences to address some basic questions in fluid dynamics in porous media. The master thesis project will concern simulation of multiphase flows with transport of electrolytes in porous channels. The software package ESPResSo (www.espressomd.org) will be employed for the studies of the thesis and will require some implementation in C++ and Python. The package contains modules for electro kinetics and Shan-Chen model of multiphase flows. The studies are expected to provide insight into physical phenomena in porous media.

Contact: Kartik Jain or Christian Holm


Bachelorarbeiten germany.png

Die folgenden Themen von Bachelorarbeiten sind momentan am ICP zu vergeben. Wer gerne in unserem Bereich eine Bachelorarbeit schreiben möchte aber bei den folgenden Themen kein geeignetes Thema finden kann, der kann Kontakt mit Christian Holm, Rudolf Hilfer, Maria Fyta, oder Jens Smiatek aufnehmen und nach weiteren Themen fragen.

Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.

Electrophorese von Polyelektrolyten mittels eines elektrokinetischen Lösers auf Basis des Gitter-Boltzmann Algorithmus (LB)

Beim Transport von geladenen Polymer wie z.B. DNS spielen elektrostatische Wechselwirkungen eine große Rolle. In diesem Projekt soll die sogenannte elektrophoretische Mobilität von Polyelektrolyten wie eventuell auch Kolloiden mit molekulardynamischen Simulationen unter Benutzung eines Gitteralgorithmus auf der Basis der Gitter-Boltzmann Methode untersucht werden, um so die wissenschaftliche Grundlage für ein genaues Verständnis dieses Prozesses zu legen. Das zugrundeliegende Softwarepaket wird ESPResSo und eventuell waLBerla sein.

Ansprechpartner: Christian Holm oder Florian Weik

Phasenverhalten von dipolaren Flüssigkeiten

Dipolare Flüssigkeiten können sowohl aus magnetischen Dipolen wie auch aus elektrischen Dipolen bestehen. Im ersten Fall spricht man von magnetischen Flüssigkeiten (Ferrofluide), im letzteren kann es sich auch um einfaches Wasser handeln. Dipolare Systeme haben eine anisotrope Wechselwirkung und ein komplizierteres Phasenverhalten als zum Beispiel ein System aus harten Kugeln. Ziel des Projektes ist es, das Phasendiagramm eines solchen Systems zu reproduzieren, und die sogenannte Ferroelektrische Phase zu quantifizieren. Die benötigten Algorithmen sind im Programmpaket ESPResSo implementiert, was auch benutzt werden soll.

Ansprechpartner: Rudolf Weeber oder Christian Holm

Biofunktionalisierte Kohlenstoff Nanostrukturen

Ansprechpartner: Maria Fyta oder Bibek Adhikari

Funktionalisierung/Dotierung von ultradünne MoS2 Schichten

Ansprechpartner: Maria Fyta oder Ganesh Sivaraman

Vorhersage der Gleichgewichtsaufquellung eines Hydrogels in multivalenten Salzlösungen

Hydrogele sind Polymernetzwerke deren Volumen in Salzlösung enorm zunehmen kann. Das Schwellverhalten kann durch einige äußere Parameter beeinflusst werden. Dazu gehören der pH-Wert, Temperatur, Zusammensetzung der Salzlösung, Licht oder elektrische Felder. In dieser Bachelorarbeit soll das Schwellverhalten eines vergröberten Hydrogelmodells mit Hilfe von ESPResSo untersucht werden.

Ansprechpartner: Christian Holm oder Jonas Landsgesell

Untersuchung zur Entfaltung spezieller DNA Strukturen

Ansprechpartner: Jens Smiatek oder Ewa Anna Oprzeska-Zingrebe

Simulation von Puffer-Lösungen

Ansprechpartner: Jens Smiatek oder Julian Michalowsky

pH-induced reversal of phoretic propulsion

Mikroschwimmer oder aktive Kolloide sind ein hochaktuelles und spannendes Thema in der Physik der weichen Materie. Es gibt zahlreiche künstliche Realisierungen solcher Schwimmer, das natürliche Vorbild für diese sind jedoch stets Bakterien, die sich in Jahrmillionen der Evolution perfekt an ihre biologische Aufgabe angepasst haben. Verbesserungen des Verständnisses der Fortbewegung von Mikroschwimmern können beispielsweise dabei helfen, die Interaktion von Bakterien und Mikroorganismen mit ihrer Umgebung besser zu verstehen und künftig die Entwicklung von Mikromotoren und Methoden für den zielgerichteten Medikamententransport im menschlichen Körper ermöglichen. Ein bestimmter Schwimmer wurde in der Gruppe von Peer Fischer in Stuttgart entwickelt: eine Silikatkugel wird auf einer Seite mit Titandioxid beschichtet und schwimmt in einer Wasserstoffperoxid-Lösung, wenn sie Ultraviolettstrahlung ausgesetzt ist. Dabei stellt sich heraus, dass die Bewegungsrichtung vom pH-Wert der Lösung abhängig ist.

Im Rahmen einer Bachelorarbeit soll dieser Schwimmer mit Hilfe der Finite-Elemente-Methode modelliert werden und untersucht werden, durch welche Antriegseigenschaften die pH-Abhändigkeit zustande kommt. Dafür wird die Software COMSOL verwendet und die elektrokinetischen Gleichungen (Diffusion, Elektrostatik, Hydrodynamik) gelöst.

Ansprechpartner: Christian Holm, Michael Kuron or Patrick Kreissl

Weitere Literatur: