Difference between revisions of "Theses"

From ICPWiki
Jump to navigation Jump to search
 
(43 intermediate revisions by 12 users not shown)
Line 1: Line 1:
 
If you are looking for topics for a PhD thesis, have a look at [[Open Positions]].
 
If you are looking for topics for a PhD thesis, have a look at [[Open Positions]].
  
== Diplom- und Masterarbeiten {{german}} ==
+
== Masterarbeiten {{german}} ==
  
Diplom- und Masterarbeiten können bei uns in den Bereichen ''Statistische Physik'',
+
Masterarbeiten können bei uns in den Bereichen ''Statistische Physik'',
 
''Theorie und Simulation poröser Medien'', ''Fraktionale Infinitesimalrechnung''
 
''Theorie und Simulation poröser Medien'', ''Fraktionale Infinitesimalrechnung''
 
''Simulation und Theorie weicher Materie'' durchgeführt werden.
 
''Simulation und Theorie weicher Materie'' durchgeführt werden.
Line 9: Line 9:
 
Dies umfasst insbesondere Nukleation, Ferrofluide, Hydrogele sowie Polymere und Biomoleküle. Desweiteren kann sich eine Arbeit aber auch stärker an der Entwicklung von Methoden, Algorithmen und der Simulationssoftware {{es}} orientieren.
 
Dies umfasst insbesondere Nukleation, Ferrofluide, Hydrogele sowie Polymere und Biomoleküle. Desweiteren kann sich eine Arbeit aber auch stärker an der Entwicklung von Methoden, Algorithmen und der Simulationssoftware {{es}} orientieren.
  
Wer Interesse daran hat, eine Master- oder Diplomarbeit am ICP zu schreiben, der kann [[Rudolf Hilfer]],[[Olaf Lenz]], [[Christian Holm]], [[Axel Arnold]], [[Maria Fyta]], oder [[Jens Smiatek]] kontaktieren, um einen Überblick über die möglichen Themen zu bekommen. Bei Interesse an einem bestimmten der im folgenden genannten Themen kann er direkt einen der unten genannten Ansprechpartner kontaktieren.
+
Wer Interesse daran hat, eine Masterarbeit am ICP zu schreiben, der kann [[Rudolf Hilfer]], [[Christian Holm]] oder [[Alexander Schlaich]] kontaktieren, um einen Überblick über die möglichen Themen zu bekommen. Bei Interesse an einem bestimmten der im folgenden genannten Themen kann er direkt einen der unten genannten Ansprechpartner kontaktieren.
  
 
Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.
 
Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.
Line 28: Line 28:
 
=== Systemgrößenskalierung und Simulation von Phasenübergängen ===
 
=== Systemgrößenskalierung und Simulation von Phasenübergängen ===
 
Ansprechpartner: [[Rudolf Hilfer]]
 
Ansprechpartner: [[Rudolf Hilfer]]
 
=== Parameterstudien zum Einfluss von hydrodynamischen Korrelationen auf die Dynamik von geladenen Kolloiden ===
 
Ansprechpartner: [[Dominic Röhm]],[[ Axel Arnold]]
 
 
=== [[wd:Phasendiagramm|Phasendiagramm]] von nicht zentrierten [[wd:Dipol|Dipol]]en ===
 
Ansprechpartner: [[Rudolf Weeber]]
 
 
=== Lösung der [[wd:Poisson-Boltzmann-Gleichung|Poisson-Boltzmann-Gleichung]] in beschränkten Geometrien ===
 
Ansprechpartner: [[Stefan Kesselheim]]
 
 
=== [[wd:Ionenkanal|Ionenkanäle]] ===
 
Ansprechpartner: [[Stefan Kesselheim]]
 
  
 
=== Magnetische Gele ===
 
=== Magnetische Gele ===
Ansprechpartner: [[Rudolf Weeber]]
+
Ansprechpartner: [[Rudolf Weeber]],[[Christian Holm]]
  
 
=== [[wd:Ionische Flüssigkeit|Ionische Flüssigkeiten]] ===
 
=== [[wd:Ionische Flüssigkeit|Ionische Flüssigkeiten]] ===
* Dielektrisches Spektrum von Modellfluiden, Ansprechpartner: [[Florian Dommert]]
+
* Coarse-grained Modelle für ionische Flüssigkeiten, Ansprechpartner: [[Christian Holm]]
* Coarse-grained Modelle für ionische Flüssigkeiten, Ansprechpartner: [[Peter Košovan]]
 
  
 
=== Mikrostrukturbildung und Phasenverhalten von kolloidalen Janus-Teilchen ===
 
=== Mikrostrukturbildung und Phasenverhalten von kolloidalen Janus-Teilchen ===
 
Ansprechpartner: [[Christian Holm]]
 
Ansprechpartner: [[Christian Holm]]
 
=== Implementierung, Verbesserung und Anwendung moderner Simulationsalgorithmen in der Software {{es}} ===
 
Ansprechpartner: [[Olaf Lenz]]
 
  
 
=== Mehrphasenströmungen in porösen Medien ===
 
=== Mehrphasenströmungen in porösen Medien ===
Line 60: Line 44:
 
Ansprechpartner: [[Rudolf Hilfer]]
 
Ansprechpartner: [[Rudolf Hilfer]]
  
=== Computerbasierte statistische Untersuchung der Ausscheidungsbildung in Fe/Cu-Systemen ===
 
 
{{Download|Ausschreibung_Diplom_Master_IMWF_ICP.pdf|Ausschreibung}}
 
 
Ansprechpartner: [[Kai Kratzer]], [http://www.imwf.uni-stuttgart.de/institut/ansprechpartner/ansprechpartner.html David Molnar]
 
 
=== Vergröbertes Potential für DNA ===
 
 
Ein neuartiges Potential dass DNA Prozesse modellieren kann würde entwickelt. Dieses Potential musst noch überprüft werden in Prozessen wie DNA Denaturierung oder DNA Dehnung.
 
 
Ansprechpartner: [[Maria Fyta]]
 
 
=== Wechselwirkung von DNA und Elektroden ===
 
 
Das Projekt is relevant mit dem Prozess von DNA Translokation durch Nanoporen für das Ablesen des Erbgutes. Zwei verschiedene Arten von Nanoporen werden untersucht:
 
* Grafen Elektroden
 
* Funktionalisierte Nanoporen
 
Ansprechpartner: [[Maria Fyta]]
 
 
=== Fehlstellen in Diamant ===
 
 
Molekulardynamik und Dichtenfunktional Simulationen werden benutzt um die thermische Stabilität und die elektronischen Eigenschaften von Fehlstellen in diamantartigen Materialien zu untersuchen.
 
<!--A very well studied defect is the nitrogen-vacancy center in diamond, which has enormous potential to be used as a qubit. Along these lines, a search for similar defect centers will be made.-->
 
 
Ansprechpartner: [[Maria Fyta]]
 
 
=== Elektronische Eigenschaften von dotierten Nanostrukturen ===
 
 
Quantenmechanische Simulationen werden durchgeführt um die elektronische Struktur von Kohlenstoff-basierte Materialien zu untersuchen. Diese können kleine Kohlenstoff Clusters sein, Diamantoiden, Fullerene, Nanoröhrchen und Kohlenstoff-Zwiebeln. Es wird quantitative gezeigt welcher der Einfluss der Dotierung auf die elektronische Eigenschaften ist.
 
 
Ansprechpartner: [[Maria Fyta]]
 
 
=== Mechanismen der Wechselwirkung zwischen [[wd:Kompatible Solute|kompatiblen Soluten]] und Proteinen / Lipid-Membranen ===
 
Ansprechpartner: [[Jens Smiatek]]
 
 
=== Freie Energie Landschaften und Entfaltungspfade von speziellen [[wd:G-Quadruplex|DNA-Strukturen]] ===
 
Ansprechpartner: [[Jens Smiatek]]
 
 
=== Untersuchung der Auswirkungen der Beschränkung des Phasenraums auf die Faltung von Proteinen ===
 
Ansprechpartner: [[Jens Smiatek]]
 
 
=== Simulationen zur Auswirkung von hydrodynamischen und elektrostatischen Wechselwirkungen auf die Protein-Entfaltung  ===
 
Ansprechpartner: [[Jens Smiatek]]
 
  
 
== Bachelorarbeiten {{german}} ==
 
== Bachelorarbeiten {{german}} ==
  
Die folgenden Themen von Bachelorarbeiten sind momentan am ICP zu vergeben. Wer gerne in unserem Bereich eine Bachelorarbeit schreiben möchte aber bei den folgenden Themen kein geeignetes Thema finden kann, der kann Kontakt mit [[Christian Holm]], [[Rudolf Hilfer]], [[Axel Arnold]], [[Olaf Lenz]], [[Maria Fyta]], oder [[Jens Smiatek]] aufnehmen und nach weiteren Themen fragen.
+
Die folgenden Themen von Bachelorarbeiten sind momentan am ICP zu vergeben. Wer gerne in unserem Bereich eine Bachelorarbeit schreiben möchte aber bei den folgenden Themen kein geeignetes Thema finden kann, der kann Kontakt mit [[Christian Holm]], [[Rudolf Hilfer]] oder [[Alexander Schlaich]] aufnehmen und nach weiteren Themen fragen.
  
 
Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.
 
Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.
  
=== Poisson-Boltzmann-Löser in beschränkten Geometrien  ===
+
=== NMR Relaxation Times for Hydrogels from Coarse-Grained Simulations ===
Die [[wd:Poisson-Boltzmann-Gleichung|Poisson-Boltzmann-Gleichung]] beschreibt die [[wd:Ion|Ionen]]verteilung um geladene Objekte. Sie wird standardmäßig in biomolekularen Simulationen, z.B. zur Berechnung von [[wd:freie Energie|freien Energien]] benutzt, sowie in der Simulation von geladener weicher Materie verwendet, wie beispielsweise von [[wd:Desoxyribonukleinsäure|DNS]]-Strängen oder ladungsstabilisierten [[wd:Kolloid|Kolloiden]]. In dieser Arbeit soll die PB-Gleichung mit Hilfe des PDE-Lösers des Softwarepaketes [http://www.dune-project.org/ Dune] mittels der [[wd:Finite-Elemente-Methode|Finite-Elemente-Methode]] gelöst werden. Die Ionenverteilungen verschiedener Modellgeometrien sollen untersucht und mit Hilfe expliziter [[wd:Molekulardynamik|Molekulardynamik]]-Simulationen im Softwarepaket {{ES}} überprüft werden.
+
Hydrogels are highly absorbent and responsive polymeric networks with multiple applications, e.g. in hygiene products, medicine, desalination and for cell cultures.
 
+
Coarse-Grained simulations can be used to simulate the swelling behaviour of these systems and furthermore obtain information not accessible with experiments.
Ansprechpartner: [[Stefan Kesselheim]]
+
The goal of this project is to establish the relation between heterogeneities and network defects and NMR relaxation times in polyelectrolyte hydrogels.
 
+
Because NMR relaxation times are directly accessible in experiments, these simulations will help us to make sense of recent (and ongoing) experimental results.
=== Parameterstudien zur Translokation von Biomolekülen durch Nanoporen ===
 
In den letzten Jahren ist es möglich geworden, künstliche Nanoporen als Sonden in der Welt einzelner Makromoleküle zu benutzen. Bei dem Transport dieser Moleküle durch die Pore spielen elektrostatische Wechselwirkungen eine große Rolle, weil fast alle Biomoleküle (z.B. [[wd:Desoxyribonukleinsäure|DNS]] stark geladen sind. In diesem Projekt soll die Rolle der elektrostatischen Wechselwirkung für diesen Prozess mit [[wd:Molekulardynamik|molekulardynamischen Simulationen]] untersucht werden, um so die wissenschaftliche Grundlage für ein genaues Verständnis dieses Prozesses zu legen. Nur wenn das System gut verstanden ist, kann es letztlich - wie man sich erhofft - zur schnellen Sequenzierung von DNS genutzt werden.  Das zugrundeliegende Softwarepaket wird {{ES}} sein.
 
 
 
Ansprechpartner: [[Stefan Kesselheim]]
 
  
=== Messung der dielektrischen Konstante in einer ionischen Flüssigkeit ===
+
Contact: [[Simon Gravelle]], [[David Beyer]], [[Mariano Brito]][[Alexander Schlaich]] or [[Christian Holm]]
Mit einem vereinfachten Modell von harten geladenen Kugeln soll im Rahmen einer [[wd:Molekulardynamik|Molekulardynamischen Simulation]] die [[wd:Dielektrizitätskonstante|statische dielektrische Konstante]] bestimmt werden, wie sie aus Messungen mittels [[wd:Dielektrische Spektroskopie|dielektrischer Spektroskopie]] bestimmt wird.
 
 
 
Ansprechpartner: [[Florian Dommert]] oder  [[Axel Arnold]]
 
  
 
=== Phasenverhalten von dipolaren Flüssigkeiten ===
 
=== Phasenverhalten von dipolaren Flüssigkeiten ===
Line 131: Line 65:
  
  
 +
=== Chapman-Enskog-Analyse von Lattice-Boltzmann-Krafttermen ===
 +
Die [[w:Lattice Boltzmann methods|Lattice-Boltzmann-Methode]] (LB) ist ein effizientes numerisches Verfahren, um die Navier-Stokes-Gleichungen auf einem Gitter zu lösen und so Strömungsfelder zu bestimmen. Da Soft Matter oft in wässriger Lösung vorzufinden ist, benutzen die meisten unserer Simulationen dieses Verfahren.
 +
Die Boltzmanngleichung gilt auf mesoskopischen Skalen Skalen und beschreibt Wahrscheinlichkeitsverteilungen, während die Navier-Stokes-Gleichungen Impuls- und Massenflüsse betrachten. Die Äquivalenz der beiden Herangehensweisen wird durch eine [[w:Chapman–Enskog_theory|Chapman-Enskog-Expansion]] (CE) gezeigt.
  
=== Vergröberte Modelle von ionischen Flüssigkeiten ===
+
Es gibt unterschiedliche Wege, Kräfte in einer LB-Methode zu berücksichtigen, aber bislang keinen gründlichen Vergleich zwischen ihnen im Rahmen einer CE. Es gibt ein in Python geschriebenes Tool namens [http://pycodegen.pages.walberla.net/lbmpy/ lbmpy], das ein Computeralgebrasystem nutzt, um automatisch CEs für LBs berechnen. Dieses kann jedoch [https://i10git.cs.fau.de/pycodegen/lbmpy/-/issues/12 bislang] keine Kräfte berücksichtigen.
 
 
Es existiert eine Klasse von [[wd:Ionische Flüssigkeit|ionische Flüssigkeiten]] mit Schmelzpunkten unterhalb 100&deg;, deren Eigenschaften als Lösungsmittel großes Interesse weckt. Da viele der Mechanismen, die den Charakter der ionischen Flüssigkeiten ausmachen, noch nicht vollständig erklärt sind, können vergröberte Modelle diese Moleküle helfen, entscheidende Faktoren zu identifizieren, um ein besseres Verständnis dieser Lösungsmittel zu ermöglichen. Eine klassische [[wd:Molekulardynamik|Molekulardynamikstudie]] entsprechender Kugelmodelle von Kationen und Anionen soll dazu dienen existierende Modelle zu validieren und gegebenenfalls diese zu erweitern, um einen ersten Einblick in das Prinzip der Molekulardynamik-Simulation, des Coarse-grainings und dem weiten Feld der ionischen Flüssigkeiten zu erhalten.   
 
 
 
Ansprechpartner: [[Florian Dommert]] oder [[Peter Košovan]]
 
 
 
=== Gitter-Boltzmann-Simulationen auf [[wd:GPGPU|Grafikprozessoren]] ===
 
 
 
Grafikprozessoren (GPUs) sind bei geeigneten Algorithmen mehr als 10 mal so schnell wie ein vergleichbarer konventioneller Prozessor. Zu diesen Algorithmen zählt z.B. die [[wd:Lattice-Boltzmann-Methode|Gitter-Boltzmann-Methode]] für [[wd:Strömungsdynamik|Strömungsdynamik]]. Diese Methode wird in unserer Arbeitsgruppe eingesetzt, um klassische Teilchen mit [[wd:Hydrodynamik|hydrodynamischen]] Wechselwirkungen zu simulieren. Dabei läuft eine [[wd:Molekulardynamik|Molekulardynamik-Simulation]] in der Software {{ES}}, während die Strömungsdynamik auf einer GPU gerechnet wird. Im Rahmen einer Bachelorarbeit sollen Performancemessungen an unserem Code vorgenommen werden, sowie dieser für den Einsatz in Multi-GPU-Umgebungen fit gemacht werden. Ein anderes Thema in diesem Bereich ist die Implementation neuer Randbedingungen, um etwa Mikrokanäle zu simulieren.
 
 
 
Ansprechpartner: [[Axel Arnold]]
 
 
 
=== Leistungsvergleich verschiedener Simulationssoftware ===
 
 
 
Am ICP wird die Simulationssoftware {{es}} entwickelt, mit derene Hilfe [[wd:Molekulardynamik|Molekulardynamik-Simulationen]] durchgeführt werden können.  Es existieren verschiedene andere Simulationssoftwarepakte (z.B. [[wd:GROMACS|GROMACS]] oder [http://lammps.sandia.gov/ Lammps]]). Im Rahmen der Bachelorarbeit sollen verschiedene Modellsysteme in den verschiedenen Simulationspaketen simuliert werden und Performancevergleiche zwischen den Paketen angestellt werden. Die Arbeit soll dabei helfen, Schwächen und Stärken der verschiedenen Pakete aufzudecken.
 
 
 
Ansprechpartner: [[Olaf Lenz]]
 
 
 
=== Leistungsvergleich verschiedener Algorithmen zur Coulomb-Wechselwirkung ===
 
 
 
Die Berechnung der [[wd:Coulombsches Gesetz|Coulomb-Wechselwirkung]] nimmt bei [[wd:Molekulardynamik|Molekulardynamik-Simulationen]] von geladenen Systemen einen beachtlichen Teil der Rechenzeit in Anspruch. Über viele Jahrzehnte wurden und werden neue Algorithmen zur Lösung dieses Problems entwickelt. Einige dieser Algorithmen sind im Programmpaket {{ES}} implementiert. Neben kurzem Einlesen in diese Methoden sollen vor allem Simulationen verschiedener Modellsysteme zum direkten Vergleich von Genauigkeit und Performance der Methoden durchgeführt werden. Die Ergebnisse sollen geeignet interpretiert und präsentiert werden.
 
 
 
Ansprechpartner: [[Florian Fahrenberger]]
 
 
 
=== Mechanische Eigenschaften von DNA in Salzlösung ===
 
 
 
Die Steifigkeit der DNA für vershiedenen Längen wird gegenüber Salz Konzetration und Temperatur untersucht. Die Simulationen werden mittels Molekulardynamik mit elektrokinetischen Effekten und mit ein neuartiges Potential für die DNA durchgeführt.
 
 
 
Ansprechpartner: [[Maria Fyta]]
 
 
 
=== Transferierbarkeit von klassischen ionischen Kraftfeldern ===
 
 
 
Optimierte klassische ionische Kraftfelder sind wichtig für Molekulardynamik Simulationen, insbesondere wenn man biophysikalische Prozesse von Biomolekülen in Salz Lösung modellieren will. Dazu muss man sorgfältig die Transferierbarkeit von existierende ionischen Kraftfeldern für verschiedene Salze und Konzetrationen testen.
 
 
 
Ansprechpartner: [[Maria Fyta]]
 
 
 
=== Dotierung von Diamantoiden ===
 
 
 
Diamantoiden sind sehr kleine diamantartige Nanostrukturen die mit Wasserstoff Atomen terminiert sind. In diesem Projekt wird der Einfluss der Dotierung von Diamantoiden auf deren elektronischen und mechanischen Eigenschaften untersucht. Die Simulationen werden mittels quanten-mechanischen Methoden und Molekulardynamik (für die thermische Stabilität von diesen Materialien) durchgeführt.
 
<!--Diamondoids are a family of tiny hydrogen-terminated diamond clusters, which were discovered recently. The aim of this project is to examine how the electronic properties of the diamondoids will be changed, when these are doped. The simulations will be carried out with a density-functional-theory based methodology. Molecular Dynamics will be used to address the thermal stability of the doped diamondoids.-->
 
 
 
Ansprechpartner: [[Maria Fyta]]
 
 
 
<!--=== Coalescence of Carbon onions ===
 
 
 
Carbon onions are concentric fullerene structures and can be used in 3-D nanoarchitecture of novel materials. In this respect, the project will focus in ways to promote the coalescence of these structures. It will also be tested, whether dopant atoms will be essential in increasing the binding energy of adjacent carbon onions. The simulations will be carried out with Molecular Dynamics simulations. A quantum-mechanical approach can be used to calculate the electronic properties of the coalesced nanoparticles and compare these with the standing-alone carbon onions.
 
 
 
Ansprechpartner: [[Maria Fyta]]-->
 
=== Helix-Struktur-Entstehung bei einem vergröberten Polymer unter Nicht-Gleichgewichtsbedingungen ===
 
 
 
Ansprechpartner: [[Jens Smiatek]]
 
 
 
=== Wechselwirkungen zwischen [[wd:Chaotrope Verbindung|kosmotropen / chaotropen Soluten]] und Proteinen ===
 
 
 
Ansprechpartner: [[Jens Smiatek]]
 
 
 
=== Untersuchung von Wassereigenschaften in Anwesenheit von [[wd:Hitzeschockproteine|Hitze/Kälte-Schock-Proteinen]] ===
 
 
 
Ansprechpartner: [[Jens Smiatek]]
 
 
 
=== Dichteabhängige Diffusion von geladenen Kolloiden während der Kristallbildung ===
 
 
 
Verschiedene Diffusionsprozesse spielen eine wichtige Rolle bei der Bildung von
 
Kolloidkristallen, da die Kristallisation ein Zusammenspiel von
 
Anordnung und Teilchentransport zur Kristalloberfläche darstellt. In dieser
 
Studie soll der Einfluss der Dichte auf die Diffusion von geladenen Kolloiden
 
untersucht werden. Dazu sollen als Ausgangspunkt die bekannten Gesetze für
 
harte Kugeln dienen und im weiteren die Dichteabhängigkeit der Diffusion und
 
der hydrodynamischen Wechselwirkungen im Falle von geladenen Kolloiden ermittelt
 
werden.
 
 
 
Ansprechpartner: [[Dominic Röhm]], [[Axel Arnold]]
 
  
=== Einfluss laminarer Strömungen auf die Kristalllisationsgeschwindigkeit von Kolloidkristallen ===
+
Im Rahmen einer Bachelorarbeit soll die CE für LB-Kräfte aufgestellt werden. Dies ist eine primär theoretische Aufgabe, da hierzu die in der Literatur gefundenen Herangehensweisen zusammengefasst und verallgemeinert werden sollen.
 +
Anschließend wird die CE in lbmpy implementiert und auf verschiedene Kraftterme angewendet, um deren Genauigkeit und Stabilität zu bestimmen.
  
Experimentielle Untersuchungen von Kolloidlösungen zeigen einen starken Einfluss der Thermalisierungart auf die Kristallisationsgeschwindigkeit auf. Innerhalb dieser Bachelorarbeit sollen die Kristallisationsgeschwindigkeiten nach Anlegen eines Scherflusses
+
Ansprechpartner: [[Michael Kuron]], [[Rudolf Weeber]]
ermittelt und mit den vorhandenen Daten der Kristallisation ohne Scherfluss verglichen werden.
 
  
Ansprechpartner: [[Dominic Röhm]], [[Axel Arnold]]
+
Weitere Literatur: <bibentry>krueger17a,schiller08a,bauer20b-pre</bibentry>

Latest revision as of 22:43, 22 September 2022

If you are looking for topics for a PhD thesis, have a look at Open Positions.

Masterarbeiten germany.png

Masterarbeiten können bei uns in den Bereichen Statistische Physik, Theorie und Simulation poröser Medien, Fraktionale Infinitesimalrechnung Simulation und Theorie weicher Materie durchgeführt werden.

Dies umfasst insbesondere Nukleation, Ferrofluide, Hydrogele sowie Polymere und Biomoleküle. Desweiteren kann sich eine Arbeit aber auch stärker an der Entwicklung von Methoden, Algorithmen und der Simulationssoftware ESPResSo orientieren.

Wer Interesse daran hat, eine Masterarbeit am ICP zu schreiben, der kann Rudolf Hilfer, Christian Holm oder Alexander Schlaich kontaktieren, um einen Überblick über die möglichen Themen zu bekommen. Bei Interesse an einem bestimmten der im folgenden genannten Themen kann er direkt einen der unten genannten Ansprechpartner kontaktieren.

Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.


Simulationen zur Leitfähigkeit von Polymerelektrolyten

Ansprechpartner: Christian Holm

Simulationen zur Meerwasserentsalzung mittels Hydrogelen

Ansprechpartner: Christian Holm

Theorien und numerische Methoden für poröse Medien

Ansprechpartner: Rudolf Hilfer

Fraktionale Ableitungen und dielektrische Relaxation

Ansprechpartner: Rudolf Hilfer

Systemgrößenskalierung und Simulation von Phasenübergängen

Ansprechpartner: Rudolf Hilfer

Magnetische Gele

Ansprechpartner: Rudolf Weeber,Christian Holm

Ionische Flüssigkeiten

  • Coarse-grained Modelle für ionische Flüssigkeiten, Ansprechpartner: Christian Holm

Mikrostrukturbildung und Phasenverhalten von kolloidalen Janus-Teilchen

Ansprechpartner: Christian Holm

Mehrphasenströmungen in porösen Medien

Ansprechpartner: Rudolf Hilfer

Dreidimensionale Bildverarbeitung

Ansprechpartner: Rudolf Hilfer


Bachelorarbeiten germany.png

Die folgenden Themen von Bachelorarbeiten sind momentan am ICP zu vergeben. Wer gerne in unserem Bereich eine Bachelorarbeit schreiben möchte aber bei den folgenden Themen kein geeignetes Thema finden kann, der kann Kontakt mit Christian Holm, Rudolf Hilfer oder Alexander Schlaich aufnehmen und nach weiteren Themen fragen.

Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.

NMR Relaxation Times for Hydrogels from Coarse-Grained Simulations

Hydrogels are highly absorbent and responsive polymeric networks with multiple applications, e.g. in hygiene products, medicine, desalination and for cell cultures. Coarse-Grained simulations can be used to simulate the swelling behaviour of these systems and furthermore obtain information not accessible with experiments. The goal of this project is to establish the relation between heterogeneities and network defects and NMR relaxation times in polyelectrolyte hydrogels. Because NMR relaxation times are directly accessible in experiments, these simulations will help us to make sense of recent (and ongoing) experimental results.

Contact: Simon Gravelle, David Beyer, Mariano Brito, Alexander Schlaich or Christian Holm

Phasenverhalten von dipolaren Flüssigkeiten

Dipolare Flüssigkeiten können sowohl aus magnetischen Dipolen wie auch aus elektrischen Dipolen bestehen. Im ersten Fall spricht man von magnetischen Flüssigkeiten (Ferrofluide), im letzteren kann es sich auch um einfaches Wasser handeln. Dipolare Systeme haben eine anisotrope Wechselwirkung und ein komplizierteres Phasenverhalten als zum Beispiel ein System aus harten Kugeln. Ziel des Projektes ist es, das Phasendiagramm eines solchen Systems zu reproduzieren, und die sogenannte Ferroelektrische Phase zu quantifizieren. Die benötigten Algorithmen sind im Programmpaket ESPResSo implementiert, was auch benutzt werden soll.

Ansprechpartner: Rudolf Weeber oder Christian Holm


Chapman-Enskog-Analyse von Lattice-Boltzmann-Krafttermen

Die Lattice-Boltzmann-Methode (LB) ist ein effizientes numerisches Verfahren, um die Navier-Stokes-Gleichungen auf einem Gitter zu lösen und so Strömungsfelder zu bestimmen. Da Soft Matter oft in wässriger Lösung vorzufinden ist, benutzen die meisten unserer Simulationen dieses Verfahren. Die Boltzmanngleichung gilt auf mesoskopischen Skalen Skalen und beschreibt Wahrscheinlichkeitsverteilungen, während die Navier-Stokes-Gleichungen Impuls- und Massenflüsse betrachten. Die Äquivalenz der beiden Herangehensweisen wird durch eine Chapman-Enskog-Expansion (CE) gezeigt.

Es gibt unterschiedliche Wege, Kräfte in einer LB-Methode zu berücksichtigen, aber bislang keinen gründlichen Vergleich zwischen ihnen im Rahmen einer CE. Es gibt ein in Python geschriebenes Tool namens lbmpy, das ein Computeralgebrasystem nutzt, um automatisch CEs für LBs berechnen. Dieses kann jedoch bislang keine Kräfte berücksichtigen.

Im Rahmen einer Bachelorarbeit soll die CE für LB-Kräfte aufgestellt werden. Dies ist eine primär theoretische Aufgabe, da hierzu die in der Literatur gefundenen Herangehensweisen zusammengefasst und verallgemeinert werden sollen. Anschließend wird die CE in lbmpy implementiert und auf verschiedene Kraftterme angewendet, um deren Genauigkeit und Stabilität zu bestimmen.

Ansprechpartner: Michael Kuron, Rudolf Weeber

Weitere Literatur: