Theses

From ICPWiki
Jump to navigation Jump to search

If you are looking for topics for a PhD thesis, have a look at Open Positions.

Masterarbeiten germany.png

Masterarbeiten können bei uns in den Bereichen Statistische Physik, Theorie und Simulation poröser Medien, Fraktionale Infinitesimalrechnung Simulation und Theorie weicher Materie durchgeführt werden.

Dies umfasst insbesondere Nukleation, Ferrofluide, Hydrogele sowie Polymere und Biomoleküle. Desweiteren kann sich eine Arbeit aber auch stärker an der Entwicklung von Methoden, Algorithmen und der Simulationssoftware ESPResSo orientieren.

Wer Interesse daran hat, eine Masterarbeit am ICP zu schreiben, der kann Rudolf Hilfer, Christian Holm, Maria Fyta, oder Jens Smiatek kontaktieren, um einen Überblick über die möglichen Themen zu bekommen. Bei Interesse an einem bestimmten der im folgenden genannten Themen kann er direkt einen der unten genannten Ansprechpartner kontaktieren.

Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.


Simulationen zur Leitfähigkeit von Polymerelektrolyten

Ansprechpartner: Christian Holm

Simulationen zur Meerwasserentsalzung mittels Hydrogelen

Ansprechpartner: Christian Holm

Theorien und numerische Methoden für poröse Medien

Ansprechpartner: Rudolf Hilfer

Fraktionale Ableitungen und dielektrische Relaxation

Ansprechpartner: Rudolf Hilfer

Systemgrößenskalierung und Simulation von Phasenübergängen

Ansprechpartner: Rudolf Hilfer

Magnetische Gele

Ansprechpartner: Rudolf Weeber,Christian Holm

Ionische Flüssigkeiten

  • Coarse-grained Modelle für ionische Flüssigkeiten, Ansprechpartner: Christian Holm

Mikrostrukturbildung und Phasenverhalten von kolloidalen Janus-Teilchen

Ansprechpartner: Christian Holm

Implementierung, Verbesserung und Anwendung moderner Simulationsalgorithmen in der Software ESPResSo

Ansprechpartner: Florian Weik

Mehrphasenströmungen in porösen Medien

Ansprechpartner: Rudolf Hilfer

Dreidimensionale Bildverarbeitung

Ansprechpartner: Rudolf Hilfer

Biofunktionalisierte Kohlenstoff Nanostrukturen / Biofunctionalized carbon nanostructures

Ansprechpartner: Maria Fyta

Wechselwirkung von DNA und MoS2 / Interaction of DNA with MoS2

Ansprechpartner: Maria Fyta

Dehnungseffekte auf Kohlenstoff Strukturen / Influence of strain on defective carbon nanostructures

Ansprechpartner: Maria Fyta

Electrophoretically Driven Self-Propelled Colloidal Particles

In this project you will investigate the fascinating non-equilibrium world of active colloids and model self-electrophoretically driven particles. The research into chemically driven active colloids has taken off in the last years, with over a 100 publications in the field per year, compared to only a few 5 years ago. Typically, the particles achieve self-propulsion by decomposing hydrogen peroxide into water and oxygen, thus harvesting chemical energy from their environment and converting this into forward motion. However, the exact mechanism by which the conversion into motion is achieved is still poorly understood. It is speculated that both diffusiophoresis and electrophoresis could play a role, and which of the two effects dominates depends on the materials used and the environmental conditions. In order to address these pressing questions, you will further develop the GPU-based description of diffusiophoretically driven self-propelled particles that is currently available in ESPResSo using C++ and CUDA programming. You will write code to study the self-electrophoretic mechanism and compare your results to those obtained in experimental systems. This is a challenging project and should only be considered by those who have a good understanding of programming and a keen interest in physics.

Contact: Joost de Graaf or Christian Holm

Bachelorarbeiten germany.png

Die folgenden Themen von Bachelorarbeiten sind momentan am ICP zu vergeben. Wer gerne in unserem Bereich eine Bachelorarbeit schreiben möchte aber bei den folgenden Themen kein geeignetes Thema finden kann, der kann Kontakt mit Christian Holm, Rudolf Hilfer, Maria Fyta, oder Jens Smiatek aufnehmen und nach weiteren Themen fragen.

Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.

Parameterstudien zur Translokation von Biomolekülen durch Nanoporen

In den letzten Jahren ist es möglich geworden, künstliche Nanoporen als Sonden in der Welt einzelner Makromoleküle zu benutzen. Bei dem Transport dieser Moleküle durch die Pore spielen elektrostatische Wechselwirkungen eine große Rolle, weil fast alle Biomoleküle (z.B. DNS stark geladen sind. In diesem Projekt soll die Rolle der elektrostatischen Wechselwirkung für diesen Prozess mit molekulardynamischen Simulationen untersucht werden, um so die wissenschaftliche Grundlage für ein genaues Verständnis dieses Prozesses zu legen. Nur wenn das System gut verstanden ist, kann es letztlich - wie man sich erhofft - zur schnellen Sequenzierung von DNS genutzt werden. Das zugrundeliegende Softwarepaket wird ESPResSo sein.

Ansprechpartner: Christian Holm

Phasenverhalten von dipolaren Flüssigkeiten

Dipolare Flüssigkeiten können sowohl aus magnetischen Dipolen wie auch aus elektrischen Dipolen bestehen. Im ersten Fall spricht man von magnetischen Flüssigkeiten (Ferrofluide), im letzteren kann es sich auch um einfaches Wasser handeln. Dipolare Systeme haben eine anisotrope Wechselwirkung und ein komplizierteres Phasenverhalten als zum Beispiel ein System aus harten Kugeln. Ziel des Projektes ist es, das Phasendiagramm eines solchen Systems zu reproduzieren, und die sogenannte Ferroelektrische Phase zu quantifizieren. Die benötigten Algorithmen sind im Programmpaket ESPResSo implementiert, was auch benutzt werden soll.

Ansprechpartner: Rudolf Weeber oder Christian Holm

Biofunktionalisierte Kohlenstoff Nanostrukturen

Ansprechpartner: Maria Fyta oder Bibek Adhikari

Funktionalisierung/Dotierung von ultradünne MoS2 Schichten

Ansprechpartner: Maria Fyta oder Ganesh Sivaraman

Vorhersage der Gleichgewichtsaufquellung eines Hydrogels in multivalenten Salzlösungen

Hydrogele sind Polymernetzwerke deren Volumen in Salzlösung enorm zunehmen kann. Das Schwellverhalten kann durch einige äußere Parameter beeinflusst werden. Dazu gehören der pH-Wert, Temperatur, Zusammensetzung der Salzlösung, Licht oder elektrische Felder. In dieser Bachelorarbeit soll das Schwellverhalten eines vergröberten Hydrogelmodells mit Hilfe von ESPResSo untersucht werden.

Ansprechpartner: Christian Holm oder Jonas Landsgesell

Untersuchung zur Entfaltung spezieller DNA Strukturen

Ansprechpartner: Jens Smiatek oder Ewa Anna Oprzeska-Zingrebe

Simulation von Puffer-Lösungen

Ansprechpartner: Jens Smiatek oder Julian Michalowsky

Implementierumg des Squirmer-Modells in waLBerla

Mikroschwimmer oder aktive Kolloide sind ein hochaktuelles und spannendes Thema in der Physik der weichen Materie. Verbesserungen des Verstädnisses der Fortbewegung von Mikroschwimmern können beispielsweise dabei helfen, die Interaktion von Bakterien und Mikroorganismen mit ihrer Umgebung besser zu verstehen. Eine einfache Beschreibung kugelförmiger Schwimmer ist mit dem Squirmer-Modell möglich. Dieses soll in dem waLBerla-Programmpaket implementiert werden, um damit die hydrodynamische Wechselwirkung von mehreren Schwimmern zu simulieren. waLBerla löst mit dem Lattice-Boltzmann-Algorithmus die Navier-Stokes-Gleichung. Es ist in C++ geschrieben und für hoch effiziente Simulationen auf Supercomputern geeignet.

Ansprechpartner: Christian Holm oder Michael Kuron