Difference between revisions of "Hauptseminar Active Matter SS 2017/Finite Element Modeling of Active Particles"
(handout) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Seminartopic | {{Seminartopic | ||
|topic=Finite Element Modeling of Active Particles | |topic=Finite Element Modeling of Active Particles | ||
− | |speaker= | + | |speaker=Miftahussurur Hamidi Putra |
− | |date=2017-05- | + | |date=2017-05-31 |
− | |time= | + | |time=17:30 |
|tutor=[[Patrick Kreissl]] | |tutor=[[Patrick Kreissl]] | ||
+ | |handout=[https://www.icp.uni-stuttgart.de/~icp/html/teaching/2017-ss-hauptseminar/handout_miftahussurur_fem.pdf] | ||
}} | }} | ||
Latest revision as of 10:16, 22 May 2017
- "{{{number}}}" is not a number.
- Date
- 2017-05-31
- Time
- 17:30
- Topic
- Finite Element Modeling of Active Particles
- Speaker
- Miftahussurur Hamidi Putra
- Tutor
- Patrick Kreissl
- Handout
- [1]
Contents
The Finite Element Method (FEM) is a computational technique to solve systems of partial differential equations (PDEs) numerically — allowing also for treatment of nonlinear differential equations. In combination with its inherent ability to deal with complex geometries and to work on locally refined meshes, this makes the FEM a powerful tool for investigating not only self-diffusio- but also self-electrophoretic particle systems: The full (nonlinear) electrokinetic equations can be applied directly on an experimental length scale, while resolving critical regions on the scale of the double layer with the necessary high accuracy.
The speaker will introduce the FEM, discuss its strengths and weaknesses when applied to the electrokinetic equations, and show how the method can be used to model both self-diffusiophoretic and self-electrophoretic active particles.
Literature
-
Sascha Ehrhardt.
"Simulation of Electroosmotic Flow through Nanocapillaries using Finite-Element Methods".
Master's thesis, University of Stuttgart, 2016.
[PDF] (11 MB)
-
Kreissl, Patrick and Holm, Christian and de Graaf, Joost.
"The efficiency of self-phoretic propulsion mechanisms with surface reaction heterogeneity".
The Journal of Chemical Physics 144(20)(204902), 2016.
[PDF] (2 MB) [DOI] -
Brown, Aidan T. and Poon, Wilson C. K. and Holm, Christian and de Graaf, Joost.
"Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents".
Soft Matter 13(1200–1222), 2017.
[PDF] (5 MB) [DOI] -
Niu, Ran and Kreissl, Patrick and Brown, Aidan Thomas and Rempfer, Georg and Botin, Denis and Holm, Christian and Palberg, Thomas and de Graaf, Joost.
"Microfluidic pumping by micromolar salt concentrations".
Soft Matter 13(1505–1518), 2017.
[PDF] (5 MB) [DOI]