# Difference between revisions of "José Rafael Bordin"

Line 9: | Line 9: | ||

}} | }} | ||

− | + | ||

+ | == '''== Research ==''' == | ||

+ | |||

My main interest is computational and statistical physics applied to biological and chemical inspired problems. Since the beginning of my PhD, and so far, I'm working with equilibrium and non-equilibrium Molecular Dynamics simulations of complex fluids confined in structures as nanotubes, ionic channels and slabs. | My main interest is computational and statistical physics applied to biological and chemical inspired problems. Since the beginning of my PhD, and so far, I'm working with equilibrium and non-equilibrium Molecular Dynamics simulations of complex fluids confined in structures as nanotubes, ionic channels and slabs. |

## Revision as of 13:29, 2 October 2012

**José Rafael Bordin**

Guest scientist

Office: | 1.080 |
---|---|

Phone: | +49 711 685-67721 |

Fax: | +49 711 685-63658 |

Email: | bordin _at_ icp.uni-stuttgart.de |

Address: | José Rafael Bordin Institute for Computational Physics Universität Stuttgart Allmandring 3 70569 Stuttgart Germany |

**== Research ==**

My main interest is computational and statistical physics applied to biological and chemical inspired problems. Since the beginning of my PhD, and so far, I'm working with equilibrium and non-equilibrium Molecular Dynamics simulations of complex fluids confined in structures as nanotubes, ionic channels and slabs.

**A) Structural and dynamical behavior of water-like (core-softened) fluids in nanotubes - Equilibrium and non-equilibrium simulations**

Using empirical core-softened potentials models for water-like liquids we study the dynamical and structural properties of such fluids confined in nanotubes. Molecular Dynamics simulations in canonical, grand canonical and isothermal-isobaric ensembles are applied to understand the unusual behavior that water-like liquids exhibit under nanoconfinement.

Publications in this subject

*"Diffusion Enhancement in Core-softened fluid confined in nanotubes". J. R. Bordin, A. B. de Oliveira, A. Diehl, M. C. Barbosa. J. Chem. Phys. 137, 084504 (2012).*

**B) Electric-field mediated electrolyte and polyelectrolyte translocation through neutral and charged transmembrane channels**

We develop a Molecular Dynamics dielectric model for cylindrical nanopores embedded in membranes. Such model has a low computational cost, allowing us to search properties of the system in long simulation time. This model was applied to understand the behavior of ionic fluxes through synthetic nanochannels with charged sites.

Publications in this subject

*"Ion fluxes through nanopores and transmembrane channels". J. R. Bordin, A. Diehl, M. C. Barbosa, and Y. Levin. Phys. Rev. E 85, 031914 (2012).*