Difference between revisions of "Simulation Methods in Physics II SS 2019"
Line 87: | Line 87: | ||
| 18.04.2019 || Hartree-Fock (HF) and post HF methods || {{Download|simmethodsII_ss19_lecture3.pdf| Lecture Notes}} | | 18.04.2019 || Hartree-Fock (HF) and post HF methods || {{Download|simmethodsII_ss19_lecture3.pdf| Lecture Notes}} | ||
|- | |- | ||
− | | 02.05.2019 || Density Functional Theory (DFT) || {{Download|simmethodsII_ss19_lecture4.pdf| Perturbation Theory-MPn}}, {{Download|simmethodsII_ss19_lecture4b.pdf| DFT}} | + | | 02.05.2019 || Moller-Plesset theory, Density Functional Theory (DFT) || {{Download|simmethodsII_ss19_lecture4.pdf| Perturbation Theory-MPn}}, {{Download|simmethodsII_ss19_lecture4b.pdf| DFT}} |
|- | |- | ||
− | | 09.05.2019 || <i>ab initio</i> MD | + | | 09.05.2019 || DFT, TDDFT <i>ab initio</i> MD|| |
|- | |- | ||
− | | 16.05.2019 || Classical force fields and water models || | + | | 16.05.2019 || QM/MM, Classical force fields and water models || |
|- | |- | ||
| 23.05.2019 || Simulations of macromolecules and soft matter, Poisson-Boltzmann theory, charged polymers || | | 23.05.2019 || Simulations of macromolecules and soft matter, Poisson-Boltzmann theory, charged polymers || |
Revision as of 12:22, 2 May 2019
Overview
- Type
- Lecture (2 SWS) and Tutorials "Simulationsmethoden in der Praxis" (2 SWS)
- Lecturer
- JP Dr. Maria Fyta
- Course language
- English
- Location and Time
- Lecture: Thu, 11:30 - 13:00; ICP, Allmandring 3, Seminar Room (room 01.079)
- Tutorials: Thu 14:00 - 15:30; Thu 09:45-11:15 (extra tutoring time when the tutors will be partly available); Tutors: Dr. Maofeng Dou, Dr. Kartik Jain; ICP, Allmandring 3, CIP-Pool (room 01.033)
The tutorials have their own title "Simulationsmethoden in der Praxis", as they can be attended independently of the lecture and are in fact part part of the Physics MSc module "Fortgeschrittene Simulationsmethoden" and not of the module containing the lecture "Simulation Methods in Physics II".
These hands-on-tutorials will take place in the CIP-Pool of the ICP, Allmandring 3. They consist of practical exercises at the computer, like small programming tasks, simulations, visualization and data analysis. The tutorials build on each other, therefore continuous attendance is expected.
Scope
The course intends to give an overview about modern simulation methods used in physics today. The stress of the lecture will be to introduce different approaches to simulate a problem, hence we will not go too to deep into specific details but rather try to cover a broad range of methods. For an idea about the content look at the lecture schedule.
Prerequisites
We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language. The knowledge of the previous course Simulation Methods I is expected.
Certificate Requirements
- 1. Obtaining 50% of the possible marks in the hand-in exercises.
The final grade will be determined from the final oral examination.
Oral Examination
Please email to Christian Holm or Maria Fyta in order to arrange a date for the oral examination.
Recommended literature
-
Daan Frenkel, Berend Smit.
Understanding Molecular Simulation: From Algorithms to Applications.
Part of Computational Science, volume 1. Edition 2.
Academic Press, San Diego, 2002. ISBN: 978-0-12-267351-1.
[DOI] -
Mike P. Allen, Dominik J. Tildesley.
Computer Simulation of Liquids.
Part of Oxford Science Publications. Edition 1.
Clarendon Press, Oxford, 1987.
-
D. C. Rapaport.
The Art of Molecular Dynamics Simulation.
Edition 2.
Cambridge University Press, 2004. ISBN: 9780511816581.
[DOI] -
D. P. Landau, K. Binder.
A guide to Monte Carlo Simulations in Statistical Physics.
Edition second edition.
Cambridge, 2005.
-
Michael Rubinstein, Ralph H. Colby.
Polymer Physics.
Oxford University Press, Oxford, UK, 2003.
-
M. E. J. Newman, G. T. Barkema.
Monte Carlo Methods in Statistical Physics.
Edition 2002 edition.
Oxford University Press, 1999.
-
Sauro Succi.
The lattice Boltzmann equation for fluid dynamics and beyond.
Oxford University Press, New York, USA, 2001. ISBN: 9780198503989.
[PDF] (13 MB) -
M. E. Tuckermann.
Statistical Mechanics: Theory and Molecular Simulation.
Oxfor University Press Oxford Graduate Texts, Oxford, 2010.
-
F. Martin, H. Zipse.
Charge Distribution in the Water Molecule - A Comparison of Methods.
Journal of Computational Chemistry 26(1):97–105, 2004.
-
E. Kaxiras.
Atomic and electronic structure of solids.
apud Cambridge, Cambridge, 2003.
-
Andrew Leach.
Molecular Modelling: Principles and Applications.
apud Pearson Education Ltd., 2001. ISBN: 978-0582382107.
Useful online resources
- Roethlisberger, Tavernelli, EPFL, Lausanne, 2015: [1]
- E-Book: Kieron Burke et al.,University of California, 2007: E-Book: The ABC of DFT.
- Linux cheat sheet
here (53 KB)
.
- A good and freely available book about using Linux: Introduction to Linux by M. Garrels
- Density-functional-theory tight-binding (DFTB): Phil. Trans. R. Soc. A, 372(2011), 20120483. [2], Computational Materials Science 47 (2009) 237–253 [3]
- "Ab Initio Molecular Dynamics: Theory and Implementation" in Modern Methods and Algorithms, NIC Series Vol 1. (2000) [4]
- University Intranet: Quantentheorie der Molekuele (DE), Springer Spektrum 2015, [5]
- Be careful when using Wikipedia as a resource. It may contain a lot of useful information, but also a lot of nonsense, because anyone can write it.
Lecture
The lecture notes will be uploaded in due time after each lecture. In order to access these from outside the University or VPN (ask your tutor about this).
Date | Subject | Resources |
---|---|---|
11.04.2019 | Introduction/organization, electronic structure | ![]() ![]() |
16.04.2019 | QM methods ingredients, Hartree approximations | ![]() ![]() ![]() ![]() |
18.04.2019 | Hartree-Fock (HF) and post HF methods | ![]() ![]() |
02.05.2019 | Moller-Plesset theory, Density Functional Theory (DFT) | ![]() ![]() ![]() ![]() |
09.05.2019 | DFT, TDDFT ab initio MD | |
16.05.2019 | QM/MM, Classical force fields and water models | |
23.05.2019 | Simulations of macromolecules and soft matter, Poisson-Boltzmann theory, charged polymers | |
30.05.2019 | Holiday (Christi Himmelfahrt) | --- |
06.06.2019 | Hydrodynamic methods I (Brownian and Langevin Dynamics) | |
13.06.2019 | Holiday (Pfingsten) | --- |
20.06.2018 | Holiday (Fronleichnam) | --- |
27.06.2019 | Hydrodynamic methods II (DPD, Lattice-Boltzmann) (contd.) | |
04.07.2019 | Lattice-Boltzmann (contd.) | |
11.07.2019 | Free energy methods | |
18.07.2019 | Coarse-graining, multiscale simulations |
Tutorials
Location and Time
- The tutorials take place in the CIP-Pool on the first floor of the ICP (Room 01.033, Allmandring 3), Thu 14:00 - 15:30; Thu 09:45-11:15 (extra tutoring time when the tutors will be partly available) (Tutors: Maofeng Dou / Kartik Jain )
Worksheets
There will be in total 6 worksheets, which will be handed out every two weeks on Wednesdays at 14:00. The deadline for the solutions will be two weeks after on Wednesdays before 13:00. The first worksheet will be uploaded on Wed. April 17th. The deadline will be Wed. May 1st.
Worksheet 1: Quantum chemistry and simple models
- Deadline: May 1, 2019, 13:00 by email to Maofeng Dou use SM2_01 as subject line.
Worksheet 1 (100 KB)
template (2 KB)
- input files
latex-template.tex (7 KB)
- LaTeX template for the report
Worksheet 2: Density Functional Theory
- Deadline: May 15, 2019, 13:00 noon by email to Maofeng Dou use SM2_02 as subject line.
Worksheet 2 (141 KB)
template (3.4 MB)
- input files
latex-template.tex (7 KB)
- LaTeX template for the report
General Remarks
- For the tutorials, you will get a personal account for the ICP machines.
- All material required for the tutorials can also be found on the ICP computers in the directory
/group/sm/2018
. - For the reports, we have a nice
LaTeX template (7 KB)
.
- You can do the exercises in the CIP-Pool when it is not occupied by another course. The pool is accessible on all days, except weekends and late evenings.
- If you do the exercises in the CIP-Pool, all required software and tools are available.
Hand-in-exercises
- The worksheets are to be solved in groups of two or three people. We will not accept hand-in-exercises that only have a single name on it.
- A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend using LaTeX to prepare the report.
- You have two weeks to prepare the report for each worksheet.
- The report has to be sent to your tutor via email (Maofeng Dou or Kartik Jain).
- Each task within the tutorial is assigned a given number of points. Each student should have 50 % of the points from each tutorial as a prerequisite for the oral examination.
What happens in a tutorial
- The tutorials take place every week.
- You will receive the new worksheet on the days before the tutorial.
- In the first tutorial after you received a worksheet, the solutions of the previous worksheet will be presented (see below) and the new worksheet will be discussed.
- In the second tutorial after you received the worksheet, there is time to work on the exercises and to ask questions for the tutor.
- You will have to hand in the reports on Monday after the second tutorial.
- In the third tutorial after you received the worksheet, the solutions will be discussed:
- The tutor will ask a team to present their solution.
- The tutor will choose one of the members of the team to present each task.
- This means that each team member should be able to present any task.
- At the end of the term, everybody should have presented at least once.