Simulation Methods in Physics II SS 2019

From ICPWiki
Revision as of 09:27, 3 August 2019 by Mfyta (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Lecture (2 SWS) and Tutorials "Simulationsmethoden in der Praxis" (2 SWS)
JP Dr. Maria Fyta
Course language
Location and Time
Lecture: Thu, 11:30 - 13:00; ICP, Allmandring 3, Seminar Room (room 01.079)
Tutorials: Thu 14:00 - 15:30; Thu 09:45-11:15 (extra tutoring time when the tutors will be partly available); Tutors: Dr. Maofeng Dou, Dr. Kartik Jain; ICP, Allmandring 3, CIP-Pool (room 01.033)

The tutorials have their own title "Simulationsmethoden in der Praxis", as they can be attended independently of the lecture and are in fact part part of the Physics MSc module "Fortgeschrittene Simulationsmethoden" and not of the module containing the lecture "Simulation Methods in Physics II".

These hands-on-tutorials will take place in the CIP-Pool of the ICP, Allmandring 3. They consist of practical exercises at the computer, like small programming tasks, simulations, visualization and data analysis. The tutorials build on each other, therefore continuous attendance is expected.


The course intends to give an overview about modern simulation methods used in physics today. The stress of the lecture will be to introduce different approaches to simulate a problem, hence we will not go too to deep into specific details but rather try to cover a broad range of methods. For an idea about the content look at the lecture schedule.


We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language. The knowledge of the previous course Simulation Methods I is expected.

Certificate Requirements

1. Obtaining 50% of the possible marks in the hand-in exercises.

The final grade will be determined from the final oral examination.

Oral Examination

Please email to Christian Holm or Maria Fyta in order to arrange a date for the oral examination.

Recommended literature

Useful online resources

  • Roethlisberger, Tavernelli, EPFL, Lausanne, 2015: [1]
  • Linux cheat sheet application_pdf.pnghere (53 KB)Info circle.png.
  • Density-functional-theory tight-binding (DFTB): Phil. Trans. R. Soc. A, 372(2011), 20120483. [2], Computational Materials Science 47 (2009) 237–253 [3]
  • "Ab Initio Molecular Dynamics: Theory and Implementation" in Modern Methods and Algorithms, NIC Series Vol 1. (2000) [4]
  • University Intranet: Quantentheorie der Molekuele (DE), Springer Spektrum 2015, [5]
  • Be careful when using Wikipedia as a resource. It may contain a lot of useful information, but also a lot of nonsense, because anyone can write it.


The lecture notes will be uploaded in due time after each lecture. In order to access these from outside the University or VPN (ask your tutor about this).

Date Subject Resources
11.04.2019 Introduction/organization, electronic structure application_pdf.png Lecture Notes (2.62 MB)Info circle.png
16.04.2019 QM methods ingredients, Hartree approximations application_pdf.png QM ingredients (1.43 MB)Info circle.png, application_pdf.png Lecture Notes (2.82 MB)Info circle.png
18.04.2019 Hartree-Fock (HF) and post HF methods application_pdf.png Lecture Notes (2.93 MB)Info circle.png
02.05.2019 Moller-Plesset theory, Density Functional Theory (DFT) application_pdf.png Perturbation Theory-MPn (3.4 MB)Info circle.png, application_pdf.png DFT (2.37 MB)Info circle.png
09.05.2019 DFT (continued) application_pdf.png Lecture Notes (4.77 MB)Info circle.png
16.05.2019 TDDFT, ab initio MD application_pdf.png TDDFT (2.31 MB)Info circle.png, application_pdf.png ab initio MD (5 MB)Info circle.png
23.05.2019 QM/MM, Classical water models application_pdf.png QMMM (713 KB)Info circle.png, application_pdf.png explicit models (998 KB)Info circle.png, application_pdf.png implicit models (4.33 MB)Info circle.png
30.05.2019 Holiday (Christi Himmelfahrt) ---
06.06.2019 Polymer Models application_pdf.png Lecture Notes (10.2 MB)Info circle.png
13.06.2019 Holiday (Pfingsten) ---
20.06.2018 Holiday (Fronleichnam) ---
27.06.2019 Polymer dynamics, Flory theory, Poisson-Boltzmann theory application_pdf.png Lecture Notes (10.26 MB)Info circle.png
04.07.2019 Hydrodynamic methods application_pdf.png Lecture Notes (14.24 MB)Info circle.png
11.07.2019 Free energy methods application_pdf.png Lecture Notes (10.75 MB)Info circle.png
18.07.2019 Particle interactions application_pdf.png Lecture Notes (9.69 MB)Info circle.png, application_pdf.png slides (1.01 MB)Info circle.png


Location and Time

  • The tutorials take place in the CIP-Pool on the first floor of the ICP (Room 01.033, Allmandring 3), Thu 14:00 - 15:30; Thu 09:45-11:15 (extra tutoring time when the tutors will be partly available) (Tutors: Maofeng Dou / Kartik Jain )


There will be in total 6 worksheets, which will be handed out every two weeks on Wednesdays at 14:00. The deadline for the solutions will be two weeks after on Wednesdays before 13:00. The first worksheet will be uploaded on Wed. April 17th. The deadline will be Wed. May 1st.

Worksheet 1: Quantum chemistry and simple models

Worksheet 2: Density Functional Theory

Worksheet 3: QM/MM of water molecule on Au surface and ab initio molecular dynamics of water monomer/dimer

Worksheet 4: Properties of Coarse-grained Polymers

Worksheet 5: Charge distribution and Poisson Boltzmann theory

Worksheet 6: Computational Fluid Dynamics and Free Energy


General Remarks

  • For the tutorials, you will get a personal account for the ICP machines.
  • All material required for the tutorials can also be found on the ICP computers in the directory /group/sm/2018.
  • For the reports, we have a nice txt.pngLaTeX template (7 KB)Info circle.png.
  • You can do the exercises in the CIP-Pool when it is not occupied by another course. The pool is accessible on all days, except weekends and late evenings.
  • If you do the exercises in the CIP-Pool, all required software and tools are available.


  • The worksheets are to be solved in groups of two or three people. We will not accept hand-in-exercises that only have a single name on it.
  • A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend using LaTeX to prepare the report.
  • You have two weeks to prepare the report for each worksheet.
  • The report has to be sent to your tutor via email (Maofeng Dou or Kartik Jain).
  • Each task within the tutorial is assigned a given number of points. Each student should have 50 % of the points from each tutorial as a prerequisite for the oral examination.

What happens in a tutorial

  • The tutorials take place every week.
  • You will receive the new worksheet on the days before the tutorial.
  • In the first tutorial after you received a worksheet, the solutions of the previous worksheet will be presented (see below) and the new worksheet will be discussed.
  • In the second tutorial after you received the worksheet, there is time to work on the exercises and to ask questions for the tutor.
  • You will have to hand in the reports on Monday after the second tutorial.
  • In the third tutorial after you received the worksheet, the solutions will be discussed:
    • The tutor will ask a team to present their solution.
    • The tutor will choose one of the members of the team to present each task.
    • This means that each team member should be able to present any task.
    • At the end of the term, everybody should have presented at least once.