Difference between revisions of "Simulation Methods in Physics I WS 2012"
(29 intermediate revisions by 3 users not shown) | |||
Line 42: | Line 42: | ||
|- | |- | ||
− | |18.10.2012 || Course Content, Organisation, Introduction || | + | |18.10.2012 || Course Content, Organisation, Introduction || {{DownloadExt|/teaching/2012-ws-sim_methods/slides01.pdf|Slides}} |
|- | |- | ||
− | |25.10.2012 || MD: Integrators || | + | |25.10.2012 || MD: Integrators || {{DownloadExt|/teaching/2012-ws-sim_methods/notes02.pdf|Lecture Notes}} |
|- | |- | ||
Line 51: | Line 51: | ||
|- | |- | ||
− | |08.11.2012 || Basics of Stat Mech || | + | |08.11.2012 || Basics of Stat Mech || {{DownloadExt|/teaching/2012-ws-sim_methods/notes03.pdf|Lecture Notes}} |
|- | |- | ||
− | |15.11.2012 || MD-Potentials,Units || | + | |15.11.2012 || MD-Potentials,Units || {{DownloadExt|/teaching/2012-ws-sim_methods/notes04.pdf|Lecture Notes}} |
|- | |- | ||
− | |22.11.2012 || MD-cont || | + | |22.11.2012 || MD-cont || {{DownloadExt|/teaching/2012-ws-sim_methods/notes05.pdf|Lecture Notes}} |
|- | |- | ||
− | |29.11.2012 || Observables || | + | |29.11.2012 || Observables || {{DownloadExt|/teaching/2012-ws-sim_methods/notes06.pdf|Lecture Notes}} |
+ | |||
+ | |- | ||
+ | |06.12.2012 || Langevin Dynamics || {{DownloadExt|/teaching/2012-ws-sim_methods/notes07.pdf|Lecture Notes}} {{DownloadExt|/teaching/2012-ws-sim_methods/slides07.pdf|Brownian motion slides}} | ||
+ | |||
+ | |- | ||
+ | |13.12.2012 || Error analysis || {{DownloadExt|/teaching/2012-ws-sim_methods/notes08.pdf|Lecture Notes}} | ||
+ | |||
+ | |- | ||
+ | |10.01.2013 || Monte-Carlo Method || {{DownloadExt|/teaching/2012-ws-sim_methods/notes09.pdf|Lecture Notes}} | ||
+ | |||
+ | |- | ||
+ | |17.01.2013 || Monte-Carlo and Critical Phenomena || {{DownloadExt|/teaching/2012-ws-sim_methods/notes10.pdf|Lecture Notes}} | ||
+ | |||
+ | |- | ||
+ | |24.01.2013 || Finite Size Scaling || {{DownloadExt|/teaching/2012-ws-sim_methods/notes11.pdf|Lecture Notes}} | ||
+ | |||
+ | |- | ||
+ | |31.01.2013 || Binder parameters || {{DownloadExt|/teaching/2012-ws-sim_methods/notes12.pdf|Lecture Notes}} | ||
|} | |} | ||
=== Script === | === Script === | ||
− | * | + | * {{DownloadExt|/teaching/2012-ws-sim_methods/skript.pdf|Script of lectures 1,2 and 3}} - including all lectures until November 8th, 2012 |
− | * | + | * {{DownloadExt|/teaching/2012-ws-sim_methods/skript_lect4.pdf|Script of lecture 4}} - November 15th, 2012 |
Please note that the lecture notes are currently under development. Errors may be included. | Please note that the lecture notes are currently under development. Errors may be included. | ||
If you find errors, please contact [[Jens Smiatek]]. | If you find errors, please contact [[Jens Smiatek]]. | ||
Line 76: | Line 94: | ||
=== Worksheets === | === Worksheets === | ||
+ | |||
+ | ==== Worksheet 6: Ising Model and Finite Size Scaling ==== | ||
+ | * Deadline: '''Tuesday (!) 5th February 2013, 10:00''' | ||
+ | * {{Download|WS_2012_SM1_worksheet6.pdf|Worksheet 6}} (last update Jan 30) | ||
+ | * {{Download|WS_2012_SM1_WS6_templates.tar.gz|templates.tar.gz|tgz}} (last update Jan 31) - Archive that contains the files required for this worksheet. | ||
+ | * {{Download|WS_2012_SM1_WS6_solution.tar.gz|solution.tar.gz|tgz}} - Archive that contains the sample solution | ||
+ | |||
+ | ==== Worksheet 5: Monte-Carlo ==== | ||
+ | * Deadline: '''24 January 2013, 10:00''' | ||
+ | * {{Download|WS_2012_SM1_worksheet5.pdf|Worksheet 5}} (last update Jan 16) | ||
+ | * {{Download|WS_2012_SM1_WS5_solution.tar.gz|solution.tar.gz|tgz}} - Archive that contains the sample solution | ||
+ | |||
+ | ==== Worksheet 4: Error Analysis and Langevin Thermostat ==== | ||
+ | * Deadline: '''10 January 2013, 10:00''' | ||
+ | * {{Download|WS_2012_SM1_worksheet4.pdf|Worksheet 4}} (last update Dec 14) | ||
+ | * {{Download|WS_2012_SM1_WS4_templates.tar.gz|templates.tar.gz|tgz}} - Archive that contains the files required for this worksheet. | ||
+ | * {{Download|WS_2012_SM1_WS4_solution.tar.gz|solution.tar.gz|tgz}} - Archive that contains the sample solution | ||
+ | |||
+ | ==== Worksheet 3: Molecular Dynamics 2 and Observables ==== | ||
+ | * Deadline: '''13 December 2012, 10:00''' | ||
+ | * {{Download|WS_2012_SM1_worksheet3.pdf|Worksheet 3}} (last update Dec 5) | ||
+ | * {{Download|WS_2012_SM1_WS3_templates.tar.gz|templates.tar.gz|tgz}} (last update Dec 5) - Archive that contains the files required for this worksheet. | ||
+ | * {{Download|WS_2012_SM1_WS3_solution.tar.gz|solution.tar.gz|tgz}} - Archive that contains the sample solution | ||
==== Worksheet 2: Statistical Mechanics and Molecular Dynamics ==== | ==== Worksheet 2: Statistical Mechanics and Molecular Dynamics ==== | ||
* Deadline: '''27 November 2012, 10:00''' | * Deadline: '''27 November 2012, 10:00''' | ||
* {{Download|WS_2012_SM1_worksheet2.pdf|Worksheet 2}} | * {{Download|WS_2012_SM1_worksheet2.pdf|Worksheet 2}} | ||
− | * {{Download|WS_2012_SM1_templates.tar.gz| | + | * {{Download|WS_2012_SM1_templates.tar.gz|template.tar.gz|tgz}} - Archive that contains the files required in some tasks |
* {{Download|latex-template.tex|latex-template.tex|txt}} - LaTeX-template for the report | * {{Download|latex-template.tex|latex-template.tex|txt}} - LaTeX-template for the report | ||
+ | * {{Download|WS_2012_SM1_WS2_solution.tar.gz|solution.tar.gz|tgz}} - Archive that contains the sample solution | ||
==== Worksheet 1: Integrators ==== | ==== Worksheet 1: Integrators ==== | ||
Line 89: | Line 131: | ||
* {{Download|WS_2012_SM1_cannonball_template.png|cannonball_template.png}} - Python program template as an image | * {{Download|WS_2012_SM1_cannonball_template.png|cannonball_template.png}} - Python program template as an image | ||
* {{Download|latex-template.tex|latex-template.tex|txt}} - LaTeX-template for the report | * {{Download|latex-template.tex|latex-template.tex|txt}} - LaTeX-template for the report | ||
+ | * {{Download|WS_2012_SM1_WS1_solution.tar.gz|solution.tar.gz|tgz}} - Archive that contains the sample solution | ||
=== General Remarks === | === General Remarks === | ||
Line 154: | Line 197: | ||
Depending on the module that this lecture is part of, there are differences on how to get the credits for the module: | Depending on the module that this lecture is part of, there are differences on how to get the credits for the module: | ||
− | ; BSc/MSc Physik, Modul "Simulationsmethoden in der Physik" (36010): | + | ; BSc/MSc Physik, Modul "Simulationsmethoden in der Physik" (36010) and Erasmus Mundus International Master FUSION-EP: |
− | :* Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination (USL-V) | + | :* Obtain 50% of the possible points in the hands-in excercises of this lecture and the second part of the lecture as a prerequisite for the examination (USL-V) |
:* 60 min of oral examination (PL) | :* 60 min of oral examination (PL) | ||
+ | :** After the lecture "Simulation Methods in Physics II" in summer term (i.e. Summer 2013) | ||
+ | :** Contents: both lectures and the excercises of "Simulation Methods in Physics I" | ||
; International MSc Physics, Elective Module "Simulation Techniques in Physics I, II" (240918-005): | ; International MSc Physics, Elective Module "Simulation Techniques in Physics I, II" (240918-005): | ||
:* Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination | :* Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination | ||
:* 30 min of oral examination (PL) about the lecture and the excercises | :* 30 min of oral examination (PL) about the lecture and the excercises | ||
− | |||
− | |||
; BSc/MSc SimTech, Modul "Simulationsmethoden in der Physik für SimTech I" (40520): | ; BSc/MSc SimTech, Modul "Simulationsmethoden in der Physik für SimTech I" (40520): | ||
:* Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination (USL-V) | :* Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination (USL-V) |
Latest revision as of 18:02, 18 March 2013
Overview
- Type
- Lecture (2 SWS) and Tutorials (2 SWS)
- Lecturer
- Prof. Dr. Christian Holm (Lecture); Dr. Olaf Lenz and Dr. Jens Smiatek (Tutorials)
- Course language
- English
- Location and Time
- Lecture: Thu, 11:30 - 13:00; ICP, Allmandring 3, Seminarroom 1
- Tutorials: Thu, 14:00 - 15:30 and Fri, 8:00 - 9:30; ICP, Allmandring 3, CIP-Pool
- Prerequisites
- We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, and partial differential equations, as well as knowledge of a programming language (python or C).
The lecture is accompanied by hands-on-tutorials which will take place in the CIP-Pool of the ICP, Allmandring 3. They consist of practical exercises at the computer, like small programming tasks, simulations, visualization and data analysis. The tutorials build upon each other, therefore continuous attendance is expected.
Lecture
Scope
The first part of the course intends to give an overview about modern simulation methods used in physics today. The stress of the lecture will be to introduce different approaches to simulate a problem, hence we will not go too to deep into specific details but rather try to cover a broad range of methods. In more detail, the lecture will consist of:
- Molecular Dynamics
- The first problem that comes to mind when thinking about simulating physics is solving Newtons equations of motion for some particles with given interactions. From that perspective, we first introduce the most common numerical integrators. This approach quickly leads us to Molecular Dynamics (MD) simulations. Many of the complex problems of practical importance require us to take a closer look at statistical properties, ensembles and the macroscopic observables.
- The goal is to be able to set up and run real MD simulations for different ensembles and understand and interpret the output.
- Error Analysis
- Autocorrelation, Jackknifing, Bootstrapping
- Monte Carlo Simulations
- Since their invention, the importance of Monte Carlo (MC) sampling has grown constantly. Nowadays it is applied to a wide class of problems in modern computational physics. We want to present the general idea and theory behind MC simulations and show some more properties using simple toy models like the Ising-model.
- Short interlude on Quantum Mechanical Systems
- It is obvious that solving quantum mechanical systems analytically is not possible and we need numerical help. We also want to examine the possibilities to simulate the quantum chromodynamics PDEs on a lattice (lattice gauge theory).
Course Material
Date | Subject | Ressources |
---|---|---|
18.10.2012 | Course Content, Organisation, Introduction | Slides (1.66 MB) |
25.10.2012 | MD: Integrators | Lecture Notes (244 kB) |
01.11.2012 | Holiday | |
08.11.2012 | Basics of Stat Mech | Lecture Notes (384 kB) |
15.11.2012 | MD-Potentials,Units | Lecture Notes (547 kB) |
22.11.2012 | MD-cont | Lecture Notes (219 kB) |
29.11.2012 | Observables | Lecture Notes (425 kB) |
06.12.2012 | Langevin Dynamics | Lecture Notes (163 kB) Brownian motion slides (1.54 MB) |
13.12.2012 | Error analysis | Lecture Notes (250 kB) |
10.01.2013 | Monte-Carlo Method | Lecture Notes (316 kB) |
17.01.2013 | Monte-Carlo and Critical Phenomena | Lecture Notes (228 kB) |
24.01.2013 | Finite Size Scaling | Lecture Notes (214 kB) |
31.01.2013 | Binder parameters | Lecture Notes (304 kB) |
Script
- Script of lectures 1,2 and 3 (1.72 MB) - including all lectures until November 8th, 2012
- Script of lecture 4 (336 kB) - November 15th, 2012
Please note that the lecture notes are currently under development. Errors may be included. If you find errors, please contact Jens Smiatek.
Tutorials
Location and Time
- Thursday, 14:00 - 15:00, Olaf Lenz
- Friday, 8:00 - 9:30, Jens Smiatek
Worksheets
Worksheet 6: Ising Model and Finite Size Scaling
- Deadline: Tuesday (!) 5th February 2013, 10:00
Worksheet 6 (221 KB)
(last update Jan 30)
templates.tar.gz (3 KB)
(last update Jan 31) - Archive that contains the files required for this worksheet.
solution.tar.gz (5 KB)
- Archive that contains the sample solution
Worksheet 5: Monte-Carlo
- Deadline: 24 January 2013, 10:00
Worksheet 5 (216 KB)
(last update Jan 16)
solution.tar.gz (2 KB)
- Archive that contains the sample solution
Worksheet 4: Error Analysis and Langevin Thermostat
- Deadline: 10 January 2013, 10:00
Worksheet 4 (239 KB)
(last update Dec 14)
templates.tar.gz (8.43 MB)
- Archive that contains the files required for this worksheet.
solution.tar.gz (4.56 MB)
- Archive that contains the sample solution
Worksheet 3: Molecular Dynamics 2 and Observables
- Deadline: 13 December 2012, 10:00
Worksheet 3 (319 KB)
(last update Dec 5)
templates.tar.gz (4 KB)
(last update Dec 5) - Archive that contains the files required for this worksheet.
solution.tar.gz (5 KB)
- Archive that contains the sample solution
Worksheet 2: Statistical Mechanics and Molecular Dynamics
- Deadline: 27 November 2012, 10:00
Worksheet 2 (329 KB)
template.tar.gz (5 KB)
- Archive that contains the files required in some tasks
latex-template.tex (7 KB)
- LaTeX-template for the report
solution.tar.gz (203 KB)
- Archive that contains the sample solution
Worksheet 1: Integrators
- Deadline: 13 November 2012, 10:00
Worksheet 1 (285 KB)
solar_system.tar.gz (585 bytes)
- Archive that contains the files required in some tasks
cannonball_template.png (114 KB)
- Python program template as an image
latex-template.tex (7 KB)
- LaTeX-template for the report
solution.tar.gz (3 KB)
- Archive that contains the sample solution
General Remarks
- The tutorials take place in the CIP-Pool on the first floor of the ICP (Room 1.033, Allmandring 3).
- For the tutorials, you will get a personal account for the ICP machines.
- You can do the exercises in the CIP-Pool when it is not occupied by another course. The pool is accessible on all days, except weekends and late evenings.
- If you do the exercises in the CIP-Pool, all required software and tools are available.
- If you want to do the exercises on your own computer, the following tools are required. All of these packages should be readily available from your OS distribution, if it is not Windows.
- Python
- The following Python packages:
- IPython
- NumPy
- SciPy
- matplotlib
- A C compiler (e.g. GCC)
- We only have experience with Unix/Linux machines. Although most tools will probably also work on Windows, we cannot guarantee it, and we can also not help you to get it running there.
Hand-in-exercises
- The worksheets are to be solved in groups of two or three people. We will not accept hand-in-exercises that only have a single name on it.
- A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend to use LaTeX to prepare the report.
- You have two weeks to prepare the report for each worksheet.
- The report has to be sent to the tutor via email.
- Most participants need 50% of the points in the hands-in exercises to be admitted to the oral examination (see [[#Examination|]] for details).
What happens in a tutorial
- The tutorials take place every week.
- You will receive the new worksheet on the days before the tutorial.
- In the first tutorial after you received a worksheet, the solutions of the previous worksheet will be presented (see below) and the new worksheet will be discussed.
- In the second tutorial after you received the worksheet, there is time to work on the exercises and to ask questions for the tutor.
- You will have to hand in the reports on Monday after the second tutorial.
- In the third tutorial after you received the worksheet, the solutions will be discussed:
- The tutor will ask a team to present their solution.
- The tutor will choose one of the members of the team to present each task.
- This means that each team member should be able to present any task.
- At the end of the term, everybody should have presented at least once.
Documentation
Linux
Linux Cheat Sheet (2.27 MB)
(
source (42 KB)
) - the most important linux commands on a single page
Python
- Use the existing documentation of Python itself! To get help on the command
print
, use
pydoc print
- Or use the Web browser to read it. Start
pydoc -p 4242
- and visit the page http://localhost:4242
- http://python.org/doc/ - the official Python documentation (including tutorials etc.)
Byte_of_Python.pdf (546 KB)
- the free eBook "A byte of Python" [1], also available in German[2]
NumPy
- first of all, try to use
pydoc numpy
- http://numpy.scipy.org/ - the homepage of NumPy contains a lot of documentation
Script of the lecture "Physik auf dem Computer" (german) (3.24 MB)
- Numerics in Python, using Numpy
LaTeX
Examination
Depending on the module that this lecture is part of, there are differences on how to get the credits for the module:
- BSc/MSc Physik, Modul "Simulationsmethoden in der Physik" (36010) and Erasmus Mundus International Master FUSION-EP
-
- Obtain 50% of the possible points in the hands-in excercises of this lecture and the second part of the lecture as a prerequisite for the examination (USL-V)
- 60 min of oral examination (PL)
- After the lecture "Simulation Methods in Physics II" in summer term (i.e. Summer 2013)
- Contents: both lectures and the excercises of "Simulation Methods in Physics I"
- International MSc Physics, Elective Module "Simulation Techniques in Physics I, II" (240918-005)
-
- Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination
- 30 min of oral examination (PL) about the lecture and the excercises
- BSc/MSc SimTech, Modul "Simulationsmethoden in der Physik für SimTech I" (40520)
-
- Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination (USL-V)
- 40 min of oral examination (PL) about the lecture and the excercises
- MSc Chemie, Modul "Simulationsmethoden in der Physik für Chemiker I" (35840)
-
- The marks for the module are the marks obtained in the excercises (BSL)