Difference between revisions of "Simulationsmethoden I"

From ICPWiki
Jump to: navigation, search
Line 10: Line 10:
 
:Deutsch oder Englisch, wie gewünscht- German or English, by vote
 
:Deutsch oder Englisch, wie gewünscht- German or English, by vote
 
;Time and Room
 
;Time and Room
:Lecture times: Mo:11:30-13:00 Thu: 9:45- 11:15  <br/>Tutorials: will be fixed during first week
+
:Lecture times: Mo:11:30-13:00 Thu: 9:45- 11:15  <br/>
 
+
The lecture is accompanied by hands-on-tutorials which will take place in the CIP-Pool of the ICP, Pfaffenwaldring 27, U 104 or U 108. They consist of practical excercises at the computer, like small programming tasks, simulations, visualisation and data analysis.
 
+
The tutorials build on each other, therefore continous attendance is expected.
 +
'''The dates of the tutorials will be fixed in the first lecture.'''
  
 +
==Scope==
 
The course will give an introduction to the computational tools that are used in soft matter science, like Monte-Carlo (MC) and Molecular dynamics (MD) simulations (on- and off-lattice), Poisson-Boltzmann theory (and extensions).
 
The course will give an introduction to the computational tools that are used in soft matter science, like Monte-Carlo (MC) and Molecular dynamics (MD) simulations (on- and off-lattice), Poisson-Boltzmann theory (and extensions).
  
 
== Prerequisites ==
 
== Prerequisites ==
 
 
We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language (preferably C or C++).
 
We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language (preferably C or C++).
 
== Lecture and tutorials ==
 
 
The lecture is accompanied by hands-on-tutorials which will be held in the ICP CIP- pool. They consist of practical excercises at the computer, like small programming tasks, simulations, visualisation and data analysis.
 
 
The tutorials build on each other, therefore continous attendance is expected.
 
 
'''The dates of the tutorials will be scheduled in the first lecture.'''
 
  
 
== Certificate Requirements:==
 
== Certificate Requirements:==

Revision as of 09:08, 17 March 2009

Overview

Simulationsmethoden in der Physik I:Simulation Methods in Physics I

Type
Lecture (2 SWS) and Tutorials (2 SWS)
The course will take place during the first 6 weeks of the semester with 4 hours per week lectures, and 4 hours tutorial
Lecturer
Prof. Dr. Christian Holm (Lecture) and Joan Josep Cerdà, Fatemeh Tabatabaei, Nadezhda Gribova (Tutorials)
Course language
Deutsch oder Englisch, wie gewünscht- German or English, by vote
Time and Room
Lecture times: Mo:11:30-13:00 Thu: 9:45- 11:15

The lecture is accompanied by hands-on-tutorials which will take place in the CIP-Pool of the ICP, Pfaffenwaldring 27, U 104 or U 108. They consist of practical excercises at the computer, like small programming tasks, simulations, visualisation and data analysis. The tutorials build on each other, therefore continous attendance is expected. The dates of the tutorials will be fixed in the first lecture.

Scope

The course will give an introduction to the computational tools that are used in soft matter science, like Monte-Carlo (MC) and Molecular dynamics (MD) simulations (on- and off-lattice), Poisson-Boltzmann theory (and extensions).

Prerequisites

We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language (preferably C or C++).

Certificate Requirements:

1. Attendance of the exercise classes
2. Obtaining 50% of the possible marks in the hand-in exercises

Lecture (still under revision, please keep looking)

Date Subject
20.4. Initial informational meeting - Vorbesprechung
23.4. Monte-Carlo integration/simulation (Simple vs. Importance sampling)

Look at Zuse's Z3 computer from 1941: Z3 and read something about the first big US computer at Los Alamos Evolving from Calculators to Computers

27.4. 2D Random walks (RW) and Self-avoiding random walks (SAW)--Ising model I (Phase transitions, Critical phenomena, Finite size scaling)
30.4. 2D Ising model II (Reweighting, Cluster Algorithm)
4.5. Error Analysis (Binning, Jackknife, ...)


7.5. Molecular Dynamics I (Velocity Verlet algorithm, Reduced units, Langevin thermostat, Potentials, Forces, Atomistic force fields)
11.5. Molecular Dynamics II


14.5. Long range interactions (Direct sum, Ewald summation, P3M, Fast Multipole method)

This pdf file application_pdf.pnglong_range_lecture.pdf (216 KB)Info circle.png contains surely too many details, but I will walk you through in class. In case you like to have some more background material, here is a review article by A. Arnold and me about this topic (arnold05a.pdf (file does not exist!))

14.5.
18.5.
25.5.
28.5. last lecture of Simulationsmethoden I


Recommended literature