Theses
If you are looking for topics for a PhD thesis, have a look at Open Positions.
Masterarbeiten
Masterarbeiten können bei uns in den Bereichen Statistische Physik, Theorie und Simulation poröser Medien, Fraktionale Infinitesimalrechnung Simulation und Theorie weicher Materie durchgeführt werden.
Dies umfasst insbesondere Nukleation, Ferrofluide, Hydrogele sowie Polymere und Biomoleküle. Desweiteren kann sich eine Arbeit aber auch stärker an der Entwicklung von Methoden, Algorithmen und der Simulationssoftware ESPResSo orientieren.
Wer Interesse daran hat, eine Masterarbeit am ICP zu schreiben, der kann Rudolf Hilfer, Christian Holm oder Alexander Schlaich kontaktieren, um einen Überblick über die möglichen Themen zu bekommen. Bei Interesse an einem bestimmten der im folgenden genannten Themen kann er direkt einen der unten genannten Ansprechpartner kontaktieren.
Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.
Simulationen zur Leitfähigkeit von Polymerelektrolyten
Ansprechpartner: Christian Holm
Simulationen zur Meerwasserentsalzung mittels Hydrogelen
Ansprechpartner: Christian Holm
Theorien und numerische Methoden für poröse Medien
Ansprechpartner: Rudolf Hilfer
Fraktionale Ableitungen und dielektrische Relaxation
Ansprechpartner: Rudolf Hilfer
Systemgrößenskalierung und Simulation von Phasenübergängen
Ansprechpartner: Rudolf Hilfer
Magnetische Gele
Ansprechpartner: Rudolf Weeber,Christian Holm
Ionische Flüssigkeiten
- Coarse-grained Modelle für ionische Flüssigkeiten, Ansprechpartner: Christian Holm
Mikrostrukturbildung und Phasenverhalten von kolloidalen Janus-Teilchen
Ansprechpartner: Christian Holm
Mehrphasenströmungen in porösen Medien
Ansprechpartner: Rudolf Hilfer
Dreidimensionale Bildverarbeitung
Ansprechpartner: Rudolf Hilfer
Bachelorarbeiten
Die folgenden Themen von Bachelorarbeiten sind momentan am ICP zu vergeben. Wer gerne in unserem Bereich eine Bachelorarbeit schreiben möchte aber bei den folgenden Themen kein geeignetes Thema finden kann, der kann Kontakt mit Christian Holm, Rudolf Hilfer oder Alexander Schlaich aufnehmen und nach weiteren Themen fragen.
Interessierte Studierende sollten über Grundlagen der statistischen Physik/Thermodynamik, des Umgangs mit UNIX-Systemen und der Programmierung in einer Skript- oder Programmiersprache verfügen. Grundlegende Kenntnisse von Simulationstechniken oder Numerik sind von Vorteil.
NMR Relaxation Times for Hydrogels from Coarse-Grained Simulations
Hydrogels are highly absorbent and responsive polymeric networks with multiple applications, e.g. in hygiene products, medicine, desalination and for cell cultures. Coarse-Grained simulations can be used to simulate the swelling behaviour of these systems and furthermore obtain information not accessible with experiments. The goal of this project is to establish the relation between heterogeneities and network defects and NMR relaxation times in polyelectrolyte hydrogels. Because NMR relaxation times are directly accessible in experiments, these simulations will help us to make sense of recent (and ongoing) experimental results.
Contact: Simon Gravelle, David Beyer, Mariano Brito, Alexander Schlaich or Christian Holm
Phasenverhalten von dipolaren Flüssigkeiten
Dipolare Flüssigkeiten können sowohl aus magnetischen Dipolen wie auch aus elektrischen Dipolen bestehen. Im ersten Fall spricht man von magnetischen Flüssigkeiten (Ferrofluide), im letzteren kann es sich auch um einfaches Wasser handeln. Dipolare Systeme haben eine anisotrope Wechselwirkung und ein komplizierteres Phasenverhalten als zum Beispiel ein System aus harten Kugeln. Ziel des Projektes ist es, das Phasendiagramm eines solchen Systems zu reproduzieren, und die sogenannte Ferroelektrische Phase zu quantifizieren. Die benötigten Algorithmen sind im Programmpaket ESPResSo implementiert, was auch benutzt werden soll.
Ansprechpartner: Rudolf Weeber oder Christian Holm
Chapman-Enskog-Analyse von Lattice-Boltzmann-Krafttermen
Die Lattice-Boltzmann-Methode (LB) ist ein effizientes numerisches Verfahren, um die Navier-Stokes-Gleichungen auf einem Gitter zu lösen und so Strömungsfelder zu bestimmen. Da Soft Matter oft in wässriger Lösung vorzufinden ist, benutzen die meisten unserer Simulationen dieses Verfahren. Die Boltzmanngleichung gilt auf mesoskopischen Skalen Skalen und beschreibt Wahrscheinlichkeitsverteilungen, während die Navier-Stokes-Gleichungen Impuls- und Massenflüsse betrachten. Die Äquivalenz der beiden Herangehensweisen wird durch eine Chapman-Enskog-Expansion (CE) gezeigt.
Es gibt unterschiedliche Wege, Kräfte in einer LB-Methode zu berücksichtigen, aber bislang keinen gründlichen Vergleich zwischen ihnen im Rahmen einer CE. Es gibt ein in Python geschriebenes Tool namens lbmpy, das ein Computeralgebrasystem nutzt, um automatisch CEs für LBs berechnen. Dieses kann jedoch bislang keine Kräfte berücksichtigen.
Im Rahmen einer Bachelorarbeit soll die CE für LB-Kräfte aufgestellt werden. Dies ist eine primär theoretische Aufgabe, da hierzu die in der Literatur gefundenen Herangehensweisen zusammengefasst und verallgemeinert werden sollen. Anschließend wird die CE in lbmpy implementiert und auf verschiedene Kraftterme angewendet, um deren Genauigkeit und Stabilität zu bestimmen.
Ansprechpartner: Michael Kuron, Rudolf Weeber
Weitere Literatur: