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Abstract

We study theoretically the equilibrium structure, as well as the response under external load, of characteristic carbon-based materials. The
materials considered include diamond, amorphous carbon (a-C), “amorphous diamond” and nanocomposite amorphous carbon (na-C). A universal
bulk modulus versus density curve is obeyed by all structures we consider. We calculate the dependence of elastic constants on the density. The
strength of a-C was found to increase in roughly a linear manner, with increasing concentration of four-fold atoms, with the maximum stress of the
strongest a-C sample being about half that of diamond. The response of na-C to external load is essentially identical to the response of the
embedding a-C matrix.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Amorphous carbon (a-C) is a well-established carbon-based
material, with distinct mechanical properties such as hardness
and thermal stability. These properties render a-C to be an ideal
material for coating applications. Recently, nanocomposite
carbon (na-C) has been synthesized in both hydrogenated and
pure forms [1]. It is considered as a material with similar, and
perhaps better properties than those of a-C. Na-C consists of
nanometer-scale regions of crystalline material embedded into
an a-C matrix. This material has mechanical properties between
those of a-C and diamond [2] that could in principle be fine-
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tuned by adjusting either the size of the nanocrystalline region
or the density of the amorphous matrix. Such tailoring of
material properties to match those desired in the applications
could be invaluable.

The properties of a-C and na-C can be categorized into two
broad classes: The first class includes macroscopic, mean-field
properties, such as the density, that are implicitly only related to
individual chemical bonds. Atomistic properties, on the other
hand, such as the strength, arise directly from the individual
chemical bonds between C atoms of different electronic
structure. The macroscopic properties are usually related to
the minimum or the harmonic regime of the cohesive energy
versus volume curve, and can, therefore, be easily calculated
using any reasonable description for the bonds. On the other
hand, even a rough estimate of atomistic properties requires
employing some level of quantum theory.

A quantum-mechanical treatment is able to accurately
describe the chemical bond, but can only be used to study
few hundreds of atoms for very short time scales. On the other
hand, a classical empirical potential method can handle three
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Table 1
Structural properties of diamond (D), “amorphous diamond” (WWW) and four
characteristic a-C samples (A–D)

z N4 N3 N2 B ρ ρfit

D 4.0 100 0 0 480 3.7
D (E) 4.0 100 0 0 428 3.5
D (T) 4.0 100 0 0 422 3.5
D (e) 4.0 100 0 0 443 3.5
WWW 4.0 100 0 0 434 3.4 3.5
A 3.8 78 22 0 387 3.1 3.2
B 3.7 67 32 1 361 2.9 3.0
C 3.5 47 52 1 325 2.5 2.7
D 3.2 18 77 5 211 1.6 2.1

All samples are simulated using NRL-TB, except D (E), D (T) and D (e) that
contain results obtained from the EDTB, Tersoff potential and experiment,
respectively. N4, N3 and N2 is the percentage of four- , three- and two-fold atoms,
respectively. B is the bulk modulus (in GPa), ρ the calculated density (in g/cm3),
and ρfit is the density (in g/cm3) according to the fit of ρ vs. z from Ref. [9].
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orders of magnitude more atoms for realistic time scales, at the
price of a limited accuracy in the description of the chemistry of
carbon. This interplay between classical and quantum-mechan-
ical simulations has been used to verify or predict several
experimental findings for na-C: diamond nanocrystallites were
found to be stable, having negative formation energy, when the
amorphous matrix is dense [3]. The average intrinsic stress of
the material is zero [4]. Although the bulk modulus of na-C is
higher than that of a-C, the two materials have identical ideal
strength due to identical fracture mechanisms [2]. In this work,
we first establish the validity of our simulations by ensuring that
different approximations yield identical qualitative and similar
quantitative results. We then study in more detail the elastic
properties of these materials, including the dependence of
elastic moduli as a function of their density. Finally, we
comment on their behavior under strain well beyond the elastic
regime, and discuss briefly their fracture.

2. Computational method

The quantum-mechanical calculations are based on two
different tight-binding Hamiltonians. The so-called NRL-TB
was developed by Papaconstantopoulos et al. at the Naval
Research Laboratory [5]. The parametrization of the Hamilto-
nian for C is based on similar assumptions to the previously
published parametrization for Si; see Ref. [6] for a review. The
environment-dependent tight-binding (EDTB) model of Wang
et al. [7] goes beyond the traditional two-center approximation
and allows the TB parameters to change according to the
bonding environment. In this respect, it is a considerable
improvement over the previous two-center model of Xu et al.
[8]. Both NRL-TB and EDTB schemes have been used
successfully to simulate a-C systems [9,2]. The tight-binding
molecular-dynamics simulations are carried out in the canonical
(N, V, T) ensemble, T being controlled via a stochastic
temperature control algorithm. The supercells used in the
tight-binding simulations contain 512 C atoms each.

The empirical potential simulations are based on the
continuous-space Monte Carlo method. We employ the many-
body potential of Tersoff [10], which provides a very good
description of structure and energetics for a wide range of
carbon-based materials [11,12]. This method allows for great
statistical accuracy, as it is possible to have samples at full
thermodynamic equilibrium. Moreover, through the use of
relatively large supercells, it offers the possibility to explore a
larger portion of the configurational space of the problem. The
supercells used in the Monte Carlo simulations contain 4096 C
atoms each.

Na-C is modeled by a periodic repetition of cubic supercells
that consist of a spherical crystalline region surrounded by a-C.
To construct such supercells, we first consider a cubic supercell
of diamond, and choose the radius of the spherical crystalline
phase. Keeping the atoms inside this sphere frozen to their
diamond lattice positions, we run the system at a very high
temperature (12,000–15,000 K) so that a liquid is created, and
then quench it down to 50 K, at constant volume. After that, the
system is fully equilibrated by relaxing both the system volume
and the coordinates of all atoms. In the Monte Carlo simu-
lations, we perform an additional intermediate relaxation at
room temperature to ensure that the sample is fully relaxed.

By adjusting the volume or, equivalently, the pressure of the
liquid phase, we can create samples having low- or high-density
a-C. It has been shown that properties of a-C can be described in
terms of a single parameter, z [9]. This is the average co-
ordination number, or number of neighbors, for each atom in the
sample. More precisely, z it is the integral of the nearest-
neighbor peak of the pair-correlation function. By convention,
individual atoms in a-C are thought of having an electronic
structure in one-to-one correspondence to their coordination
number: four-, three-and two-fold atoms are usually labeled in
the literature as sp3, sp2 and sp1, respectively. Although for
most atoms such a relationship between coordination number
and hybridization holds to a good approximation, other atomic
electronic structures may be present as well. We create samples
with average coordination between 3.1 and 3.9, having
concentrations of four-fold coordinated atoms between 10 and
90%. Samples with zN3.8 are considered as tetrahedral
amorphous Carbon (ta-C). We also consider the fully tetrahedral
Wooten–Winer–Weaire (WWW) structure [13], as a model for
“amorphous diamond”. The radius of the nanocrystalline region
is of the order of 2 nm (1 nm for the quantum-mechanical
simulations), while it occupies about 30–40% of the total
volume, in accordance to experimental observations [14].

3. Equilibrium structural properties

Structural properties of diamond, “amorphous diamond” and
a-C are summarized in Table 1. For diamond, we calculate the
density (ρ) and the bulk modulus (B) using the two tight-
binding schemes and the Tersoff potential. All methods yield
results in good agreement to experiment. The a-C samples we
considered consist mostly of four-and three-fold atoms, while
two-fold atoms appear in low-density samples. Using the EDTB
model, we had found that the density of a-C depends linearly on
z, via ρ≈−3.3+1.7z [9]. We find that the linear relationship



Fig. 1. Ring statistics for various a-C samples, as calculated using the NRL-TB.
The upper three panels show the number of rings divided by the total number of
atoms in the sample, as a function of the number of atoms participating in each
ring, for three cases: low-density a-C (z=3.18), ta-C (z=3.78) and “amorphous
diamond” (z=4.00). Lowest panel shows the concentration of rings in four-fold
and three-fold atoms for the ta-C sample.

Fig. 2. Cross-section of a ball-and-stick representation for a typical model
structure of nanocomposite amorphous Carbon created using EDTB: a spherical
nanocrystal with a diameter of 1.24 nm is embedded into amorphous-C with an
average coordination of 3.8. Atoms belonging to the crystal are represented by
black spheres; four-and three-fold atoms of the amorphousmatrix are represented
by white and gray spheres, respectively.
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found using EDTB is also valid within NRL-TB, at least for the
denser samples.

Insight into the atomistic structure of a-C can be gained by
looking at the sizes and distributions of rings of atoms in the
material. A ring having k members is defined as a path which,
starting from a given atom, returns to itself after passing through
k atoms. Rings of atoms are defined in terms of the shortest-path
criterion of Franzblau [15]. The number of atoms that
participate in a ring is the ring size, and can have only specific
values for a bulk crystalline material: in diamond, for example,
the smallest ring size is six. On the contrary, three-member rings
are common in a-C. As the formation of rings is related to
atomistic binding, a quantum-mechanical treatment is necessary
in order to get reliable ring statistics.

Results for the relative ring numbers and concentrations,
found using the NRL-TB for three characteristic samples, are
shown in Fig. 1. Similar results have been obtained with EDTB
[9]. For the low-density sample, we find significant numbers for
three- and four- member rings, while the most probable ring
length is six. For ta-C, the most probable ring length is five,
while there are still some three- and four- member rings. Finally,
for the “amorphous diamond” sample, most rings are six-
membered, with few five- and seven-member ones. Although,
by construction, only four-fold atoms exist in this sample, its
random topology allows for rings that would not be present in
the crystalline material.

The bottom panel of Fig. 1 shows the composition of rings as
a function of their size, for the ta-C sample. Most atoms (over
90%) of the smallest rings are four-fold. The concentration of
four-fold atoms decreases with increasing ring size; for large
rings, with more that eight members, most atoms are three-fold.
This behavior can be attributed to the long-range correlations
found for π-bonded atoms; such π bonds are more likely to
occur between three-than between four-fold atoms. On the other
hand, such double bonds are more difficult to bend in order to
form triangles or quadrangles; this is why most atoms that
participate in small rings are four-fold. 85% of the three-
member rings and 75% of the four-member rings consist of
four-fold atoms only, while there are no rings of sizes 8 and
above having only four-fold atoms. The ring statistics presented
here are in excellent agreement to experiments and state-of-the-
art ab initio simulations [16,17].

A typical sample of na-C, generated in the NRL-TB scheme
is shown in Fig. 2. The volume fraction of the nanocrystalline
region is 31%. The surrounding amorphous material is ta-C
(z=3.8 and ρ=3.0 g/cm3). A sample created using EDTB under
identical conditions has the same crystal volume fraction and
a-C coordination, and only slightly higher density of the
amorphous phase, 3.1 g/cm3. In all cases, the surrounding a-C
matrix obeys the same density vs. coordination relationship as
pure a-C samples generated using the same recipe. The a-C
atoms are covalently bonded to the crystal, resulting thus in thin
interface regions.



Fig. 4. Elastic constants of na-C, calculated using the Tersoff potential, as a
function of the total density. The average diameter of the crystalline region is
1.7 nm, and the surrounding a-C matrix has z=3.8. The rightmost point for each
data set, for a density ρ=3.51 g/cm3, corresponds to diamond and is taken from
Ref. [11].

Fig. 3. Bulk modulus as a function of density, calculated within NRL-TB, for na-
C with different radii of the crystalline region. Calculations for a-C of various
densities, bulk diamond and “amorphous diamond” are also shown.
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As a first estimate of the hardness of nanocomposite carbon-
based materials, we calculated their bulk modulus, B. In Fig. 3,
we plot B as a function of the total density of the samples, ρ.
The bulk modulus of na-C is enhanced compared to that of pure
a-C [2]. Replacement of some amorphous material by
crystalline increases noticeably the bulk modulus, rendering it
for some samples to be higher even than that of the “amorphous
diamond”, and close to that of diamond [2].

Interestingly, all samples, including pure a-C, na-C, WWW,
and even diamond, seem to follow the same universal curve in
Fig. 3. Such universalities have been observed in the past: He
and Thorpe [18] showed that B∼ (z− z0)1.5, where z0 is
universal; Liu et al. [19] showed that B∼d−3.5, where d is the
average distance between atoms. Recently, Mathioudakis et al.
[9] showed that the two approaches are equivalent, and that for
a-C, B∼ (d−const.)−3.5. The last relationship would imply that
B∼ (ρ−1/3− const.)− 3.5. Indeed, this function provides an
alternative fit of the a-C data of Fig. 3 [9] for the whole range
of densities. The calculated bulk moduli are in general in very
good agreement to the measured ones. The agreement is better
for higher densities; for example, the calculated bulk modulus
of a-C for z=3.9 coincides with Surface Brillouin Scattering
experiments [9].

The universal dependence of B on ρ can be understood by
considering the microscopic response of the material to the
external pressure. We can think of two regimes: in low-density
materials, the pressure is undertaken by appropriately adjusting
the volume of the void regions of the material. Such voids exist
in every low-density material and are a result of induced dipole
(van der Waals) interactions. On the other hand, for dense
materials, strong covalent bonds have to be deformed, resulting
in higher bulk moduli. In this case, the resistance of the
electrons to compression follows from their quantum nature and
the Pauli principle.

In the first case, the scaling of Bwith respect to ρ can be found
by considering a model solid bonded exclusively through van der
Waals interactions. Using the Lennard–Jones potential we can
find that B∼ρ [20]. On the other hand, for high densities, we can
get the correct scaling by using the free-electron approximation:
in this case, B∼ρ5/3 [20]. This picture is demonstrated in Fig. 3:
B∼ρ for ρb3.3 g/cm3, while B∼ρ5/3 for ρN3.3 g/cm3. These
relationships hold with surprisingly good accuracy.

Being such a fundamental average property, the B vs. ρ
curve should be reproduced well by both our tight-binding
models and the empirical potential, as the latter is known to
reproduce correctly the elastic response of the material. On the
other hand, the density dependence of elastic constants
associated with changes in shape, like the Young's modulus,
can be different. Although the response of materials to volume
changes can be addressed at almost any level of theory,
understanding the response to shape changes requires a model
that takes into account the directionality of the chemical bonds.
Fortunately, as the calculation of elastic constants require only
small deformations from the minimum energy structure, the
empirical potential approach should suffice for their calculation.
As the Monte Carlo simulations offer greater statistical accuracy
and refer to more realistic sizes of the crystalline regions, we
prefer to employ this method for the calculation of elastic
constants.

To calculate the elastic constants, we apply the appropriate
deformation to the system and compute its total energy as a
function of the imposed strain. The curvature of this function at
its minimum yields the desired modulus. The number of
independent elastic constants depends on the symmetry of the
material: For a material with cubic symmetry, there are three
independent elastic constants, while for an isotropic material,
such as a-C or na-C, there are only two [21]. In Fig. 4 we plot
c11, c12, c44 and the Young's modulus Y as a function of density
for na-C and diamond. All elastic constants increase with
increasing density, similar to the previously described behavior
of the bulk modulus as a function of density. For an isotropic
material, 2c44=c11−c12. This relationship holds within 4% or
less, for all data points presented in Fig. 4, demonstrating that
na-C is a highly isotropic material. The moduli c11 and c44 are
both associated with changes in shape, and this is why their
values for na-C are much lower than the corresponding values
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for diamond, where strong directional bonds are bent. On the
other hand, c12 describes simultaneous elongation along two
axes without shearing, and the value of this modulus for
diamond follows the trend observed for na-C.

4. Ideal strength and fracture

The response of covalently-bonded materials, such as a-C
and na-C, under strain can be categorized into three broad
regimes: For small strains, the response of the material is elastic,
and Hooke's law stands: the stress is proportional to the applied
strain. For example, if tensile strain is applied to an isotropic
material, the stress will equal the strain times the Young's
modulus. The second regime corresponds to strain beyond the
elastic limit, and is usually associated with plastic deformation
of the material. The stress experienced by the material increases
with increasing strain until a maximum stress (strength) is
reached. The third regime is associated with strain beyond that
giving the maximum stress. For brittle materials like diamond,
the material breaks when the maximum stress is reached, and
further increase of the strain results therefore in zero stress.
Ductile materials, on the other hand, can be deformed beyond
the strain corresponding to the maximum of the stress.

To study the strength of a-C and na-C, we apply tensile load
on the [111] easy slip plane of the crystalline region. Strain is
simply the ratio of the volume change divided by the initial
volume of the sample; stress is the negative derivative of the
energy with respect to volume. We consider three a-C samples:
a typical a-C sample with average coordination z=3.47, a ta-C
sample with z=3.8 and an “amorphous diamond” sample. As
graphite (z=3) is known to be much softer than diamond (z=4),
it is reasonable to expect that the strength increases with
increasing z, as was the case for the elastic constants discussed
in Section 3. This is observed in Fig. 5. The maximum stresses
are roughly 60, 40 and 30 GPa for z=4.00, 3.78 and 3.50,
respectively, so that the strength of a-C is roughly proportional
Fig. 5. Stress vs. strain curves for WWW model of “amorphous diamond”
(diamonds), ta-C (squares), low-density a-C (triangles) and na-C (circles). The
latter consists crystalline regions of 1.2 nm surrounded by ta-C. Data shown are
obtained by the NRL-TB method for tensile load in the (111) direction of the
crystal.
to its concentration of four-fold atoms. Interestingly, the stress
versus strain curve for the low-density a-C sample seems to
suggest a ductile behavior. We get similar results when applying
shear strain. As a-C is highly isotropic, the energy required to
deform the material is a function of the change in its volume and
does not depend much on how this change is applied.

The strength of diamond does not fit into the simple picture of
the strength being proportional to the concentration of four-fold
atoms. If that was the case, then the strength of the isotropic
WWW sample under tensile load would be higher than the
strength of diamond under tensile load perpendicular to its easy
slip plane, (111). After all, in the WWW model the number of
bonds per unit area for a given direction has to be higher than the
number of bonds per unit area on the [111] plane of diamond.
This justifies the name “easy slip plane” for the diamond (111).
One could naively expect that the strength of theWWW sample,
consisting of four-fold atoms only, could perhaps be higher than
that of diamond, due to the lack of such easy slip planes. On the
contrary, the calculation reveals that the strength of diamond for
tensile load along its easy slip direction, (111), is around
120 GPa, about twice that of the isotropic WWW. Apparently,
the lack of easy slip planes in WWW is compensated by its
somehow distorted bonds and the lack of order beyond the first-
nearest-neighbor distance. Our results for diamond cleavage
along [111], similar to the findings of Telling et al. [22], are not
included in Fig. 5, for the benefit of the other curves' clarity.

We applied the same methodology to a na-C sample where
crystalline regions having radii of about 1.2 nm are embedded in
ta-C with a volume fraction of about 30%. The stress–strain
curve for this sample follows exactly that of the embedding ta-
C. The crystalline phase remains unaffected by the external
load, which is almost completely taken by the surrounding
amorphous matrix. Therefore, the response of na-C to external
load beyond the elastic regime is identical to the response of the
embedding matrix. As atoms in the amorphous matrix form
bonds that are always weaker than the bonds in the crystal, the
system prefers to stretch or bend these bonds and keep the
strong diamond bonds untouched. By performing an atom-by-
atom analysis of the deformation, we can probe the four-fold
atoms of the amorphous atoms as the ones more extensively
deformed when the material experiences large load [2].

5. Conclusions

We examined theoretically the structure, elastic and inelastic
response to load of several carbon-based materials, including
diamond, amorphous carbon (a-C) “amorphous diamond”
(WWW) and nanocomposite amorphous carbon (na-C). These
materials are formed by covalently-bonded four-fold and three-
fold atoms and are characterized by their average coordination
number (z). In a-C, three-, four-and five-member rings are
formed, their number increasing with decreasing z. Most of
such small rings contain four-fold atoms, while larger rings
contain also three-fold atoms. The bulk modulus of all these
carbon-based materials seems to follow a universal functional
dependence of the density. All elastic constants were also found
to increase with increasing density.
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The strength of a-C was found to increase in roughly a linear
manner, with increasing concentration of four-fold atoms. High-
density sample exhibited a brittle behavior, analogous to that of
diamond. The strongest a-C sample we considered was the
“amorphous diamond” WWW sample; this has a maximum
stress about half that of diamond. The response of na-C to
external load is essentially identical to the response of the
embedding a-C matrix.
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