Sie sind hier: ICP » R. Hilfer » Publikationen

References

1 Adler, P. (1992). Porous Media. Butterworth-Heinemann, Boston.
2 Bakke, S. and Øren, P. (1997). 3-d pore-scale modeling of sandstones and flow simulations in pore networks. SPE Journal, 2:136.
3 Barut, A. and Raczka, R. (1986). Theory of Group Representations and Applications. World Scientific, Singapore.
4 Bear, J. (1972). Dynamics of Fluids in Porous Media. Elsevier Publ. Co., New York.
5Bear, J. and Verruijt, A. (1987). Modeling Groundwater Flow and Pollution. Kluwer Academic Publishers, Dordrecht.
6 Biswal, B., Manwart, C., and Hilfer, R. (1998). Threedimensional local porosity analysis of porous media. Physica A, 255:221.
7 Biswal, B., Manwart, C., Hilfer, R., Bakke, S., and Øren, P. (1999). Quantitative analysis of experimental and synthetic microstructures for sedimentary rock. Physica A, 273:452.
8 Bryant, S., Mellor, D., and Cade, C. (1993). Physically representative network models of transport in porous media. AIChE Journal, 39:387.
9 Chatzis, I. and Dullien, F. (1977). Modelling pore structure by 2-d and 3-d networks with applications to sandstones. J. of Canadian Petroleum Technology, page 97.
10 Crivelli-Visconti(ed.), I. (1998). ECCM-8 European Conference on Composite Materials. Woodhead Publishing Ltd, Cambridge.
11 Delfiner, P. (1972). A generalization of the concept of size. J. Microscopy, 95:203.
12 Diebels, S. and Ehlers, W. (1996). On fundamental concepts of multiphase micropolar materials. Technische Mechanik, 16:77.
13 Dullien, F. (1992). Porous Media - Fluid Transport and Pore Structure. Academic Press, San Diego.
14 Ehlers, W. (1995). Grundlegende Konzepte in der Theorie poröser Medien. Technical report, Institut f. Mechanik, Universität Stuttgart, Germany.
15 Fatt, I. (1956). The network model of porous media I. capillary pressure characteristics. AIME Petroleum Transactions, 207:144.
16 Hadwiger, H. (1955). Altes und Neues über konvexe Körper. Birkhäuser, Basel.
17 Haslund, E., Hansen, B., Hilfer, R., and Nøst, B. (1994). Measurement of local porosities and dielectric dispersion for a water saturated porous medium. J. Appl. Phys., 76:5473.
18 Hearst, J. and Nelson, P. (1985). Well Logging for Physical Properties. McGraw-Hill, New York.
19 Hilfer, R. (1991). Geometric and dielectric characterization of porous media. Phys. Rev. B, 44:60.
20 Hilfer, R. (1992). Local porosity theory for flow in porous media. Phys. Rev. B, 45:7115.
21 Hilfer, R. (1993). Local porosity theory for electrical and hydrodynamical transport through porous media. Physica A, 194:406.
22 Hilfer, R. (1996). Transport and relaxation phenomena in porous media. Advances in Chemical Physics, XCII:299.
23 Hilfer, R., B.Nøst, E.Haslund, Th.Kautzsch, B.Virgin, and B.D.Hansen (1994). Local porosity theory for the frequency dependent dielectric function of porous rocks and polymer blends. Physica A, 207:19.
24 Hilfer, R., Rage, T., and Virgin, B. (1997). Local percolation probabilities for a natural sandstone. Physica A, 241:105.
25 Katz, A. and Thompson, A. (1986). Quantitative prediction of permeability in porous rock. Phys. Rev. B, 34:8179.
26 Lake, L. (1989). Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs.
27 Levitz, P. and Tchoubar, D. (1992). Disordered porous solids: From chord distributions to small angle scattering. J. Phys. I France, 2:771.
28 Manwart, C. and Hilfer, R. (1999). to be published.
29 Manwart, C., Torquato, S., and Hilfer, R. (2000). Stochastic reconstruction of sandstones. Phys.Rev.E, 62:893.
30 Marsily, G. (1986). Quantitative Hydrogeology – Groundwater Hydrology for Engineers. Academic Press, San Diego.
31 Mecke, K. and Wagner, H. (1991). Euler characteristic and related measures for random geometric sets. J. Stat. Phys., 64:843.
32 Muche, L. and Stoyan, D. (1992). Contact and chord length distributions of the poisson voronoi tessellation. Journal of applied probability, 29:467.
33Quiblier, J. (1984). A new three dimensional modeling technique for studying porous media. J. Colloid Interface Sci., 98:84.
34 Roberts, A. (1997). Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys.Rev.E, 56:3203.
35 Roberts, J. and Schwartz, L. (1985). Grain consolidation and electrical conductivity in porous media. Phys. Rev. B, 31:5990.
36 Roy, S. and Tarafdar, S. (1997). Archies’s law from a fractal model for porous rock. Phys.Rev.B, 55:8038.
37 Sahimi, M. (1993). Flow phenomena in rocks: From continuum models to fractals, percolation, cellular automata and simulated annealing. Rev. Mod. Phys., 65:1393.
38 Sahimi, M. (1995). Flow and Transport in Porous Media and Fractured Rock. VCH Verlagsgesellschaft mbH, Weinheim.
39 Scheidegger, A. (1974). The Physics of Flow Through Porous Media. University of Toronto Press, Toronto.
40 Schneider, R. (1993). Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge.
41 Schneider, R. and Weil, W. (1992). Integralgeometrie. Teubner, Stuttgart.
42 Stell, G. (1985). Mayer-Montroll equations (and some variants) through history for fun and profit. In Shlesinger, M. and Weiss, G., editors, The Wonderful World of Stochastics, page 127, Amsterdam. Elsevier.
43 Stoyan, D., Kendall, W., and Mecke, J. (1995). Stochastic Geometry and its Applications. Akademie-Verlag / Wiley, Berlin / Chichester.
44 Torquato, S. and Stell, G. (1982). Microstructure of Two Phase Random Media I: The n-Point Probability Functions. J. Chem. Phys., 77:2071.
45 Virgin, B., Haslund, E., and Hilfer, R. (1996). Rescaling relations between two- and three dimensional local porosity distributions for natural and artificial porous media. Physica A, 232:1.
46 Widjajakusuma, J., Biswal, B., and Hilfer, R. (1999a). Quantitative prediction of effective material properties of heterogeneous media. Comp. Mat. Sci., 16:70.
47 Widjajakusuma, J., Manwart, C., Biswal, B., and Hilfer, R. (1999b). Exact and approximate calculations for conductivity of sandstones. Physica A, 270:325.
48 Yeong, C. and Torquato, S. (1998). Reconstructing random media. Phys.Rev. E, 57:495.
49 Ziman, J. (1982). Models of Disorder. Cambridge University Press, Cambridge.