Sie sind hier: ICP » R. Hilfer » Publikationen

3 Balance Laws

[143.1.1] Let V=V_{\mathbb{S}} denote the sample volume, V_{\mathbb{P}} denote the volume of pore space, V_{\mathbb{W}} the volume filled with water, V_{\mathbb{O}} the volume filled with oil, V_{\mathbb{M}}=V_{5} the volume occupied by matrix, and V_{i}=V_{{\mathbb{F}_{i}}} the volumes of the subsets \mathbb{F}_{i}\subset\mathbb{S},i=1,2,3,4. [143.1.2] The volumes are defined as

V_{\mathbb{G}}=\int\limits _{{\mathbb{R}^{3}}}\chi\rule[-4.3pt]{0.0pt}{8.6pt}_{{\mathbb{G}}}(\mathbf{y}){\rm d}^{3}\mathbf{y} (3)

where i=\mathbb{F}_{1},\mathbb{F}_{2},\mathbb{F}_{3},\mathbb{F}_{4},\mathbb{S},\mathbb{P},\mathbb{M},\mathbb{W},\mathbb{O}, and

\chi\rule[-4.3pt]{0.0pt}{8.6pt}_{{\mathbb{G}}}(\mathbf{y})=\begin{cases}1,&\mathbf{y}\in\mathbb{G}\\
0,&\mathbf{y}\notin\mathbb{G}\end{cases} (4)

is the characteristic function of a set \mathbb{G}. [143.1.3] Then volume conservation implies

\displaystyle V_{\mathbb{S}} \displaystyle=V=V_{\mathbb{P}}+V_{\mathbb{M}}=V_{\mathbb{W}}+V_{\mathbb{O}}+V_{\mathbb{M}}=\sum _{{i=1}}^{5}V_{i} (5a)
\displaystyle V_{\mathbb{W}} \displaystyle=V_{1}+V_{2} (5b)
\displaystyle V_{\mathbb{O}} \displaystyle=V_{3}+V_{4} (5c)

where V_{5}=V_{\mathbb{M}}. [page 144, §0]    [144.0.1] The volume fraction \phi=V_{\mathbb{P}}/V is called total or global porosity. [144.0.2] The volume fraction V_{\mathbb{W}}/V_{\mathbb{P}}=(V_{\mathbb{W}}/V)/\phi is the total or global water saturation, and analogous intensive quantities can be defined for the other phases.

[144.1.1] Often the saturations are not constant but vary on macroscopic scales. [144.1.2] Local volume fractions are defined by introducing a one parameter family of functions X^{\varepsilon}_{\mathbb{G}}\colon\mathbb{R}^{3}\times\mathbb{R}^{3}\to\mathbb{R} by defining X^{1}(\mathbf{x},\mathbf{x})=\chi\rule[-4.3pt]{0.0pt}{8.6pt}_{{\mathbb{G}}}(\mathbf{x}) on the diagonal and then extending it as

X_{\mathbb{G}}^{\varepsilon}(\mathbf{x},\mathbf{y})=X_{\mathbb{G}}^{1}(\mathbf{x},\mathbf{x}/\varepsilon) (6)

to the full space. [144.1.3] Here \varepsilon>0 is the scale separation parameter, and \mathbf{y}=\mathbf{x}/\varepsilon is the fast variable. [144.1.4] For an infinite sample \mathbb{S}=\mathbb{R}^{3} the local volume fractions may be defined as

\phi _{\mathbb{G}}(\mathbf{x})=\lim _{{\varepsilon\to 0}}\frac{3\varepsilon^{3}}{4\pi}\int\limits _{{\mathbb{B}(\mathbf{x},1/\varepsilon)}}X^{\varepsilon}_{\mathbb{G}}(\mathbf{x},\mathbf{y}){\rm d}^{3}\mathbf{y} (7)

where \mathbb{G}=\mathbb{F}_{1},\mathbb{F}_{2},\mathbb{F}_{3},\mathbb{F}_{4},\mathbb{S},\mathbb{P},\mathbb{M},\mathbb{W},\mathbb{O}, and \mathbb{B}(\mathbf{x},1/\varepsilon) is a sphere of radius 1/\varepsilon centered at \mathbf{x} with volume 4\pi/(3\varepsilon^{3}). [144.1.5] In the following it is assumed that the limit exists, but may in general depend also on time so that the local volume fractions \phi _{i}(\mathbf{x},t) become position and time dependent. [144.1.6] Local volume conservation implies the relations

\displaystyle\phi _{1}+\phi _{2}+\phi _{3}+\phi _{4}+\phi _{5} \displaystyle=1 (8a)
\displaystyle S_{1}+S_{2}+S_{3}+S_{4} \displaystyle=1 (8b)
\displaystyle 1-\phi \displaystyle=\phi _{5} (8c)

where \phi _{i}=\phi S_{i} (i=1,2,3,4) are volume fractions, and S_{i} are saturations. [144.1.7] The water saturation is defined as {S_{{\mathbb{W}}}}=S_{1}+S_{2}, and the oil saturation as {S_{{\mathbb{O}}}}=1-{S_{{\mathbb{W}}}}=S_{3}+S_{4}.

[144.2.1] The general law of mass balance in differential form reads (i=1,2,3,4)

\frac{\partial(\phi _{i}\varrho _{i})}{\partial t}+\mathbf{\nabla}\cdot(\phi _{i}\varrho _{i}{\mathbf{v}}_{i})=M_{i}=\sum _{{j=1}}^{5}M_{{ij}} (9)

where \varrho _{i}(\mathbf{x},t),\phi _{i}(\mathbf{x},t),{\mathbf{v}}_{i}(\mathbf{x},t) denote mass density, volume fraction and velocity of phase i=\mathbb{W},\mathbb{O} as functions of position \mathbf{x}\in\mathbb{S}\subset\mathbb{R}^{3} and time t\in\mathbb{R}_{+}. [144.2.2] Exchange of mass between the two phases is described by mass transfer rates M_{i} giving the amount of mass by which phase i changes per unit time and volume. [144.2.3] The rate M_{{ij}} is the rate of mass transfer from phase j into phase i.

[144.3.1] The law of momentum balance is formulated as (i=1,2,3,4)

\phi _{i}\varrho _{i}\frac{{\rm D}^{i}}{{\rm D}t}{\mathbf{v}}_{i}-\phi _{i}\mathbf{\nabla}\cdot\Sigma _{i}-\phi _{i}\mathbf{F}_{i}=\mathbf{m}_{i}-{\mathbf{v}}_{i}M_{i} (10)

where \Sigma _{i} is the stress tensor in the ith phase, \mathbf{F}_{i} is the body force per unit volume acting on the ith phase, \mathbf{m}_{i} is the momentum transfer into phase i from all the other phases, and

\frac{{\rm D}^{i}}{{\rm D}t}=\frac{\partial}{\partial t}+{\mathbf{v}}_{i}\cdot\mathbf{\nabla} (11)

denotes the material derivative for phase i=\mathbb{W},\mathbb{O}.