Sie sind hier: ICP » R. Hilfer » Publikationen

2 Definition of Phases

[142.3.1] A porous sample \mathbb{S}=(\mathbb{P}\cup\mathbb{M})\subset\mathbb{R}^{3} consists of a subset \mathbb{P} (called pore space) and a subset \mathbb{M} (called matrix). [142.3.2] The pore space \mathbb{P} contains two immiscible fluids, namely a wetting fluid, called water and denoted as \mathbb{W}, plus a nonwetting fluid, called oil and denoted as \mathbb{O}.

[142.4.1] Each of the two fluids \mathbb{W},\mathbb{O} consists of disjoint and pathconnected subsets (regions) \mathbb{W}_{i},\mathbb{O}_{i}. [142.4.2] More precisely one has

\displaystyle\mathbb{W} \displaystyle=\bigcup _{{i=1}}^{{{N_{\mathbb{W}}}}}\mathbb{W}_{i} (1a)
\displaystyle\mathbb{O} \displaystyle=\bigcup _{{i=1}}^{{{N_{\mathbb{O}}}}}\mathbb{O}_{i} (1b)

where the subsets \mathbb{W}_{i},\mathbb{O}_{i} are mutually disjoint, and each of them is pathconnected. [142.4.3] A set is called pathconnected if any two of its points can be connected by a path contained inside the set. [142.4.4] The sets are called mutually disjoint if \mathbb{O}_{i}\cap\mathbb{O}_{j}=\emptyset and \mathbb{W}_{i}\cap\mathbb{W}_{j}=\emptyset holds for all i\neq j. [142.4.5] The integers {N_{\mathbb{W}}},{N_{\mathbb{O}}} give the total number of pathconnected subsets for water resp. oil. [142.4.6] These numbers vary with time, as do the regions \mathbb{W}_{i},\mathbb{O}_{i}.

[142.5.1] Now define percolating (\mathbb{F}_{1},\mathbb{F}_{3}) and nonpercolating (\mathbb{F}_{2},\mathbb{F}_{4}) fluid regions by classifying the subsets \mathbb{W}_{i},\mathbb{O}_{i} as to whether they have empty or nonempty intersection with the sample boundary \partial\mathbb{S}. [page 143, §0]    [143.0.1] More formally, define

\displaystyle\mathbb{F}_{1} \displaystyle=\bigcup^{{N_{\mathbb{W}}}}_{{\substack{i=1\\
\partial\mathbb{W}_{i}\cap\partial\mathbb{S}\neq\emptyset}}}\mathbb{W}_{i} (2a)
\displaystyle\mathbb{F}_{2} \displaystyle=\bigcup^{{N_{\mathbb{W}}}}_{{\substack{i=1\\
\partial\mathbb{W}_{i}\cap\partial\mathbb{S}=\emptyset}}}\mathbb{W}_{i} (2b)
\displaystyle\mathbb{F}_{3} \displaystyle=\bigcup^{{N_{\mathbb{O}}}}_{{\substack{i=1\\
\partial\mathbb{O}_{i}\cap\partial\mathbb{S}\neq\emptyset}}}\mathbb{O}_{i} (2c)
\displaystyle\mathbb{F}_{4} \displaystyle=\bigcup^{{N_{\mathbb{O}}}}_{{\substack{i=1\\
\partial\mathbb{O}_{i}\cap\partial\mathbb{S}=\emptyset}}}\mathbb{O}_{i} (2d)

so that \mathbb{F}_{1} is the union of all regions \mathbb{W}_{i}, and \mathbb{F}_{3} is the union of all regions \mathbb{O}_{i}, that have nonempty intersection with the sample boundary \partial\mathbb{S}. [143.0.2] Similarly \mathbb{F}_{2} is the union of all regions \mathbb{W}_{i} that have empty intersection with \partial\mathbb{S}, and similarly for \mathbb{F}_{4}. [143.0.3] In this way each point in \mathbb{P} belongs to one of four regions \mathbb{F}_{i}, i=1,2,3,4. [143.0.4] This results in a total of four fluid phases called percolating resp. nonpercolating water, and percolating resp. nonpercolating oil. [143.0.5] The index i=5 will be used for the rigid matrix \mathbb{M}.