R. Hilfer
Physical Review E 102, 053103 (2020)
https://doi.org/10.1103/PhysRevE.102.053103
submitted on
Thursday, August 20, 2020
Relative permeabilities and capillary number correlations are widely used for quantitative estimates of enhanced water flood performance in porous media. They enter as essential parameters into reservoir simulations. Experimental capillary number correlations for seven different reservoir rocks and 21 pairs of wetting and nonwetting fluids are analyzed. The analysis introduces generalized local macroscopic capillary number correlations. It eliminates shortcomings of conventional capillary number correlations. Surprisingly, the use of capillary number correlations on reservoir scales may become inconsistent in the sense that the limits of applicability of the underlying generalized Darcy law are violated. The results show that local macroscopic capillary number correlations can distinguish between rock types. The experimental correlations are ordered systematically using a three-parameter fit function combined with a novel fluid pair based figure of merit.
For more information see