1 | R. Hilfer, “Classification theory for anequilibrium phase transitions,” Phys.Rev.E, vol. 48, p. 2466, 1993. |
2 | R. Hilfer, “On a new class of phase transitions,” in Random Magnetism and High Temperature Superconductivity (W. Beyermann, ed.), (Singapore), World Scientific Publ. Co., 1994. in press. |
3 | R. Hilfer, “Fractional dynamics, irreversibility and ergodicity breaking,” Chaos, Solitons & Fractals, p. in print, 1994. |
4 | E. Montroll and G. Weiss, “Random walks on lattices II,” J. Math. Phys., vol. 6, p. 167, 1965. |
5 | M. Barber and B. Ninham, Random and Restricted Walks. New York: Gordon and Breach Science Publ., 1970. |
6 | E. Montroll and H. Scher, “Random walks on lattices IV. continuous-time walks and influence of absorbing boundaries,” J. Stat. Phys., vol. 9, p. 101, 1973. |
7 | E. Montroll and B. West, “On an enriched collection of stochastic processes,” in Fluctuation Phenomena (E. Montroll and J. Lebowitz, eds.), (Amsterdam), p. 61, North Holland Publ. Co., 1979. |
8 | G. Weiss and R. Rubin, “Random walks: Theory and selected applications,” Adv. Chem. Phys., vol. 52, p. 363, 1983. |
9 | A. Blumen, J. Klafter, and G. Zumofen, “Models of reaction dynamics in glasses,” in Optical Spectroscopy of Glasses (I. Zschokke, ed.), (Dordrecht), p. 199, Reidel, 1986. |
10 | M. Shlesinger, “Fractal time in condensed matter,” Ann. Rev. Phys. Chem., vol. 39, p. 269, 1988. |
11 | B. Mandelbrot, The Fractal Geometry of Nature. San Francisco: Freeman, 1982. |
12 | M. Shlesinger, “Asymptotic solutions of continuous time random walks,” J. Stat. Phys., vol. 10, p. 421, 1974. |
13 | J. Tunaley, “Asymptotic solutions of the continuous time random walk model of diffusion,” J. Stat. Phys., vol. 11, p. 397, 1974. |
14 | J. Tunaley, “Some properties of the asymptotic solutions of the Montroll-Weiss equation,” J. Stat. Phys., vol. 12, p. 1, 1975. |
15 | M. Shlesinger, J. Klafter, and Y. Wong, “Random walks with infinite spatial and temporal moments,” J. Stat. Phys., vol. 27, p. 499, 1982. |
16 | J. Klafter, A. Blumen, and M. Shlesinger, “Stochastic pathway to anomalous diffusion,” Phys. Rev. A, vol. 35, p. 3081, 1987. |
17 | D. Dhar, “Lattices of effectively nonintegral dimensionality,” J. Math. Phys., vol. 18, p. 577, 1977. |
18 | S. Alexander and R. Orbach, “Density of states on fractals: “fractons”,” J. Physique Lett., vol. 43, p. L625, 1982. |
19 | R. Hilfer, Renormierungsansätze in der Theorie ungeordneter Systeme. Frankfurt: Verlag Harri Deutsch, 1986. |
20 | R. Rammal, “Spectrum of harmonic excitations on fractals,” J. Physique, vol. 45, p. 191, 1984. |
21 | R. Hilfer, “The continuum limit for selfsimilar Laplacians and the Greens function localization exponent,” 1989. UCLA-Report 982051. |
22 | M. Fukushima and T. Shima, “On a spectral analysis for the Sierpinski gasket,” Potential Analysis, vol. 1, p. 1, 1992. |
23 | R. Hilfer, “Exact solutions for a class of fractal time random walks,” Fractals, vol. 3(1), p. in print, 1995. |
24 | A. Prudnikov, Y. Brychkov, and O. Marichev, Integrals and Series, vol. 3. New York: Gordon and Breach, 1990. |
25 | A. Erdelyi (et al.), Higher Transcendental Functions, vol. III. Malabar: R.E. Krieger Publ. Co., 1981. |