Sie sind hier: ICP » R. Hilfer » Publikationen

V Macroscopic sample scale L

[4.1.2.1] Consider again the stationary limit t\to\infty of fluid flow in \mathbb{P}. [4.1.2.2] On the scale of a macroscopic sample, the viscous forces are dominated by wall friction and quantified by Darcy’s law for single phase flow

\displaystyle v_{{\mathrm{D}}}=\phi v=\frac{k}{\mu}\frac{\mathrm{d}\! P}{L}, (20)

where v_{{\mathrm{D}}} is the magnitude of the (superficial) Darcy velocity, v=|\mathbf{v}| is the phase velocity of the (interstitial) fluid, and \mathrm{d}\! P is the magnitude of the viscous pressure drop across a region of length L. [4.1.2.3] Here \mu is the fluid viscosity, k is the (absolute) permeability and \phi the porosity of the porous medium.

[4.1.3.1] The generalization of Darcy’s law to two immiscible fluids requires some assumptions. [4.1.3.2] Let \mathbb{W}(t_{0}), \mathbb{O}(t_{0}) denote the fluid configuration inside the porous medium at some initial time t_{0} and consider flooding at constant injection rates Q_{\mathbb{W}}\neq 0, Q_{\mathbb{O}}=0 or Q_{\mathbb{W}}=0, Q_{\mathbb{O}}\neq 0 with water or oil. [4.1.3.3] It is observed experimentally and then assumed theoretically that for long times t\to\infty the total volume fractions

\displaystyle\lim _{{t\to\infty}}\frac{|\mathbb{W}(t)|}{|\mathbb{P}|}=\lim _{{t\to\infty}}{S_{{\mathbb{W}}}}(t)={S_{{\mathbb{W}}}}=S (21a)
\displaystyle\lim _{{t\to\infty}}\frac{|\mathbb{O}(t)|}{|\mathbb{P}|}=\lim _{{t\to\infty}}{S_{{\mathbb{O}}}}(t)={S_{{\mathbb{O}}}}=1-S (21b)

approach constant limiting values. [4.2.0.1] The values of {S_{{\mathbb{W}}}}, {S_{{\mathbb{O}}}} will depend on the phase pressures {P_{{\mathbb{W}}}}, {P_{{\mathbb{O}}}}. [4.2.0.2] Because the injection rates are constant the homogenized phase velocities \mathbf{v}_{\mathbb{W}}(t), \mathbf{v}_{\mathbb{O}}(t) approach constant values. [4.2.0.3] Specifically,

\displaystyle\lim _{{t\to\infty}}|\mathbf{v}_{\mathbb{W}}(t)|=v_{\mathbb{W}}, \displaystyle\lim _{{t\to\infty}}|\mathbf{v}_{\mathbb{O}}(t)|=0 (22a)
\displaystyle\lim _{{t\to\infty}}|\mathbf{v}_{\mathbb{W}}(t)|=0, \displaystyle\lim _{{t\to\infty}}|\mathbf{v}_{\mathbb{O}}(t)|=v_{\mathbb{O}} (22b)

because Q_{\mathbb{W}}\neq 0, Q_{\mathbb{O}}=0 for water flooding and Q_{\mathbb{W}}=0, Q_{\mathbb{O}}\neq 0 for oil flooding. [4.2.0.4] Under these assumptions Darcy’s law is generalized from single phase flow to two-phase flow as discussed in [33, 34, 35, 36, 37] to

\displaystyle v_{{\mathrm{D}}}=\phi v_{i}=\frac{k\, k^{r}_{i}(S)}{\mu _{i}}\frac{\mathrm{d}\! P_{i}}{L} (23)

where i=\mathbb{W},\mathbb{O} indicates the two phases and the relative permeability functions {k^{r}_{{\mathbb{W}}}}(S), {k^{r}_{{\mathbb{O}}}}(S) quantify the change in permeability for phase i due to presence of the second phase. [4.2.0.5] Note that the asymptotic water configuration \mathbb{W}(\infty) must be path connected and percolating from inlet and outlet{}^{2} in case (22a) and the same holds for \mathbb{O}(\infty) in case (22b).
2: Limitations and previously unnoticed implicit assumptions for the validity of (23) were first addressed in [15] and then formulated mathematically and explicitly as the residual decoupling approximation in [18, 19, 20].

[4.2.1.1] The asymptotic pressure difference P_{\mathbb{O}}(t)-P_{\mathbb{W}}(t)for t\to\infty reflects microscopic capillarity on macroscales. [4.2.1.2] The difference is assumed to depend only on saturation

\displaystyle\lim _{{t\to\infty}}\left({P_{{\mathbb{O}}}}(t)-{P_{{\mathbb{W}}}}(t)\right)={P_{\mathrm{c}}}(S)=P_{\mathrm{b}}\,\widehat{P_{\mathrm{c}}}(S) (24)

but not on the phase velocities although dynamic capillary effects have been observed [38, 39]. [4.2.1.3] The function {P_{\mathrm{c}}}(S) is called capillary pressure and \widehat{P_{\mathrm{c}}}(S) is its dimensionless form. [4.2.1.4] The functions {P_{\mathrm{c}}}(S) and k^{r}_{i}(S) are defined on the interval [S_{{\mathbb{W}\,\mathrm{i}}},1-S_{{\mathbb{O}\,\mathrm{r}}}]. [4.2.1.5] The parameters S_{{\mathbb{W}\,\mathrm{i}}}, S_{{\mathbb{O}\,\mathrm{r}}}, defined as solutions of the equations

\displaystyle{k^{r}_{{\mathbb{W}}}}(S_{{\mathbb{W}\,\mathrm{i}}})=0 (25a)
\displaystyle{k^{r}_{{\mathbb{O}}}}(1-S_{{\mathbb{O}\,\mathrm{r}}})=0, (25b)

are the irreducible water saturation S_{{\mathbb{W}\,\mathrm{i}}} and the residual oil saturation S_{{\mathbb{O}\,\mathrm{r}}}. [4.2.1.6] Both parameters S_{{\mathbb{W}\,\mathrm{i}}} and S_{{\mathbb{O}\,\mathrm{r}}} are assumed to be small but nonvanishing, i.e. 0<S_{{\mathbb{W}\,\mathrm{i}}}\ll 1 and 0<S_{{\mathbb{O}\,\mathrm{r}}}\ll 1. [4.2.1.7] With S_{{\mathbb{W}\,\mathrm{i}}} and S_{{\mathbb{O}\,\mathrm{r}}} the parameter P_{\mathrm{b}} in eq. (24) is defined as

P_{\mathrm{b}}={P_{\mathrm{c}}}\left(\frac{S_{{\mathbb{W}\,\mathrm{i}}}+1-S_{{\mathbb{O}\,\mathrm{r}}}}{2}\right). (26)

[page 5, §0]    [5.1.0.1] If there is hysteresis, so that the values P_{\mathrm{b}}^{{\mathrm{im}}}\neq P_{\mathrm{b}}^{{\mathrm{dr}}} differ, then P_{\mathrm{b}}=(P_{\mathrm{b}}^{{\mathrm{im}}}+P_{\mathrm{b}}^{{\mathrm{dr}}})/2 will be used. [5.1.0.2] The dimensionless capillary pressure function \widehat{P_{\mathrm{c}}}(S) can be positive and negative. [5.1.0.3] The relative permeabilities are positive and monotone functions.

[5.1.1.1] The force balance between the viscous and capillary forces of macroscale two-phase flow can now be expressed either as a function of S, v_{i} and L

\displaystyle F_{i}(S,v_{i},L)=\frac{\text{(viscous pressure drop in phase $i$)}}{\text{(capillary pressure)}} \displaystyle=\frac{|\mathrm{d}\! P_{i}|}{\left|{P_{{\mathbb{O}}}}-{P_{{\mathbb{W}}}}\right|} (27a)
\displaystyle=\frac{\mu _{i}\,\phi\, v_{i}\, L}{k\, k^{r}_{i}(S)|{P_{\mathrm{c}}}(S)|} (27b)
\displaystyle=\frac{\mathrm{Ca}_{i}}{k^{r}_{i}(S)\left|\widehat{P_{\mathrm{c}}}(S)\right|} (27c)
\displaystyle=f_{i}(S,\mathrm{Ca}_{i}) \displaystyle i=\mathbb{W},\mathbb{O} (27d)

or as a function of S and the macroscopic capillary number \mathrm{Ca}_{i} in the last two equalities. [5.1.1.2] The macroscopic capillary number \mathrm{Ca}_{i} is defined as in [9] by

\mathrm{Ca}_{i}=\frac{\mu _{i}\,\phi\, v_{i}\, L}{k\, P_{\mathrm{b}}}\qquad i=\mathbb{W},\mathbb{O} (28)

and it depends not only on fluid properties, but also on properties of the porous medium such as porosity and permeablity. [5.1.1.3] Equation (27) seems to be a new result that has been overlooked so far. [5.1.1.4] Note that \mathrm{Ca} does not explicitly depend on the interfacial tension \sigma _{{\mathbb{W}\mathbb{O}}} between the two phases and that the quantity A_{i}=k\, P_{\mathrm{b}}/(\mu _{i}\,\phi) with i=\mathbb{W},\mathbb{O} is dimensionally not a velocity, but a specifc action, i.e. action per unit mass. [5.1.1.5] For a derivation of \mathrm{Ca}_{i} from the traditional macroscale equations of motion see [32, 9].