Sie sind hier: ICP » R. Hilfer » Publikationen


1 Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover Publications, New York.
2 Buckingham, E. (1907), Studies on the movement of soil moisture, U.S. Department of Agriculture, Bureau of Soils—Bulletin No. 38, pp. 1 – 61.
3 Doster, F. (2011), Die bedeutung perkolierender und nichtperkolierender phasen bei mehrphasenströmungen in porösen medien auf laborskala, Ph.D. thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart.
4 Doster, F., and R. Hilfer (2011), Generalized Buckley-Leverett theory for two phase flow in porous media, New Journal of Physics, 13, 123,030.
5 Doster, F., P. A. Zegeling, and R. Hilfer (2010), Numerical solutions of a generalized theory for macroscopic capillarity, Phys. Rev. E, 81(3), 036,307, doi:10.1103/PhysRevE.81.036307.
6 Doster, F., O. Hönig, and R. Hilfer (2012), Horizontal flow and capillarity-driven redistribution in porous media, Physical Review E, 86(1), 016,317.
7 Gerhard, J., and B. Kueper (2003), Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media, Water Resources Research, 39(8), doi:10.1029/2002WR001490.
8 Hilfer, R. (2006a), Capillary pressure, hysteresis and residual saturation in porous media, Physica A, 359, 119.
9 Hilfer, R. (2006b), Macroscopic capillarity and hysteresis for flow in porous media, Physical Review E, 73, 016,307.
10 Hilfer, R. (2006c), Macroscopic capillarity without a constitutive capillary pressure function, Physica A, 371, 209–225.
11 Hilfer, R., and F. Doster (2009), Percolation as a basic concept for macroscopic capillarity, Transport in Porous Media, doi:10.1007/s11242-009-9395-0.
12 Hönig, O., F. Doster, and R. Hilfer (2013), Traveling wave solutions in a generalized theory for macroscopic capillarity, Transport in Porous Media, pp. 1–25, doi:10.1007/s11242-013-0196-0.
13 Lake, L. W. (1989), Enhanced Oil Recovery, Prentice Hall, New Jersey.
14 Land, C. S. (1968), Calculation of imbibition relative permeability for two- and three phase flow from rock properties, Trans. Am. Inst. Min. Metall. Pet. Eng., 243.
15 Lenhard, R., J. Parker, and J. Kaluarachchi (1991), Comparing Simulated And Experimental Hysteretic Two-Phase Transient Fluid Flow Phenomena, Water Resources Research, 27(8), 2113–2124.
16 Lenhard, R., T. Johnson, and J. Parker (1993), Experimental observations of nonaqueous-phase liquid subsurface movement, Journal Of Contaminant Hydrology, 12(1-2), 79 – 101, doi:Doi: 10.1016/0169-7722(93)90016-L.
17 Lenhard, R. J., and J. C. Parker (1987), A model for hysteretic constitutive relations governing multiphase flow: 2. permeability-saturation relations, Water Resour. Res., 23(12), 2197–2206.
18 Mualem, Y. (1973), Modified Approach To Capillary Hysteresis Based On A Similarity Hypothesis, Water Resources Research, 9(5), 1324–1331.
19 Mualem, Y. (1974), A conceptual model of hysteresis, Water Resources Research, 10, 514–520.
20 Muskat, M., and M. Meres (1936), The flow of heterogeneous fluids through porous media, Physics, 7, 346.
21 Parker, J. (1989), Multiphase flow and transport in porous-media, Reviews of Geophysics, 27(3), 311–328.
22 Parker, J. C., and R. J. Lenhard (1987), A model for hysteretic constitutive relations governing multiphase flow: 1. saturation pressure relations, Water Resources Research, 23(12), 2187-2196.
23 Richards, L. A. (1931), Capillary conduction of liquids through porous medium, Physics, pp. 318–333.
24 Stauffer, F. (1978), Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media, in On scale effects in porous media, IAHR, Thessaloniki, Greece.
25 Wei, C., and M. Dewoolkar (2006), Formulation of capillary hysteresis with internal state variables, Water Resources Research, 42, W07,405.
26 Wyckoff, R. D., and H. G. Botset (1936), The flow of gas-liquid mixtures through unconsolidated sands, Physics, 7(9), 325–345, doi:10.1063/1.1745402.