F. Doster, R. Hilfer
New Journal of Physics 13, 123030 (2011)
https://doi.org/10.1088/1367-2630/13/12/123030
submitted on
Wednesday, November 23, 2011
Hysteresis and fluid entrapment pose unresolved problems for the theory of flow in porous media. A generalized macroscopic mixture theory for immiscible two-phase displacement in porous media (Hilfer 2006b Phys. Rev. E 73 016307) has introduced percolating and nonpercolating phases. It is studied here in an analytically tractable hyperbolic limit. In this limit a fractional flow formulation exists, that resembles the traditional theory. The Riemann problem is solved analytically in one dimension by the method of characteristics. Initial and boundary value problems exhibit shocks and rarefaction waves similar to the traditional Buckley–Leverett theory. However, contrary to the traditional theory, the generalized theory permits simultaneous drainage and imbibition processes. Displacement processes involving flow reversal are equally allowed. Shock fronts and rarefaction waves in both directions in the percolating and the nonpercolating fluids are found, which can be compared directly to experiment.
For more information see