Categories
fluid flow Porous Media Two-Phase Flow

Old Problems and New Solutions for Multiphase Flow in Porous Media

R. Hilfer, H. Besserer

in: Porous Media: Physics, Mo\-dels, Simulation
edited by: A. Dmitrievsky and M. Panfilov
World Scientific Publ. Co., Singapore, 133-144 (2000)
https://doi.org/10.1142/9789812817617_0008
ISBN: 978-981-02-4126-1

submitted on
Thursday, November 20, 1997

The existing macroscopic equations of motion for multiphase flow in porous media are unsatisfactory in two general respects. On the one hand characteristic experimental features, such as relationships between capillary pressure and saturations, cannot be predicted. On the other hand the theoretical derivation of the equations from the well-known laws of hydrodynamics has not yet been accomplished. In this paper we discuss these deficiencies and present an alternative description which is based on energy balances. Our description includes surface tensions as parameters and interface areas as a new macroscopic state variable. The equations are obtained from general multiphase mixture theory by explicitly accounting for the pairwise character of interfacial energies. For the special case of two immiscible fluids in a porous medium the most important ingredient is the distinction between a connected and a disconnected subphase of each fluid phase. In this way it becomes possible to handle also the spatiotemporal variation of residual saturations. The connection between the new approach and the established formulation is given by identifying a generalized Darcy Law with generalized relative permeabilities. The new equations reproduce qualitatively the saturation dependent behaviour of capillary pressure in gravitational equilibrium.



For more information see