Porous Media Two-Phase Flow

Macroscopic Equations of Motion for Two Phase Flow in Porous Media

R. Hilfer

Physical Review E 58, 2090 (1998)

submitted on
Tuesday, January 20, 1998

The usual macroscopic equations of motion for two-phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore, a more general system of macroscopic equations is derived here that incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach that exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium that shows the qualitative saturation dependence known from experiment. In addition, the proposed equations include a description of the spatiotemporal changes of residual saturations during immiscible displacement.

For more information see