Categories
Functional analysis Mathematics

Weyl Integrals on Weighted Spaces

T. Kleiner, R. Hilfer

Fractional Calculus and Applied Analysis 22, 1225-1248 (2019)
DOI: 10.1515/fca-2019-0065

submitted on
Thursday, January 31, 2019

Weighted spaces of continuous functions are introduced such that Weyl fractional integrals with orders from any finite nonnegative interval define equicontinuous sets of continuous linear endomorphisms for which the semigroup law of fractional orders is valid. The result is obtained from studying continuity and boundedness of convolution as a bilinear operation on general weighted spaces of continuous functions and measures.



For more information see

Categories
Functional analysis Mathematics

Convolution Operators on Weighted Spaces of Continuous Functions and Supremal Convolution

T. Kleiner, R. Hilfer

Annali di Matematica Pura ed Applicata 199, 1547-1569 (2020)
https://doi.org/10.1007/s10231-019-00931-z

submitted on
Tuesday, September 25, 2018

The convolution of two weighted balls of measures is proved to be contained in a third weighted ball if and only if the supremal convolution of the corresponding two weights is less than or equal to the third weight. Here supremal convolution is introduced as a type of convolution in which integration is replaced with supremum formation. Invoking duality the equivalence implies a characterization of equicontinuity of weight-bounded sets of convolution operators having weighted spaces of continuous functions as domain and range. The overall result is a constructive method to define weighted spaces on which a given set of convolution operators acts as an equicontinuous family of endomorphisms. The result is applied to linear combinations of fractional Weyl integrals and derivatives with orders and coefficients from a given bounded set.



For more information see