Difference between revisions of "Physics of Soft and Biological Matter 1 WS 2013/2014"

From ICPWiki
Jump to navigation Jump to search
(Created page with "== Overview == ;Type :Lecture (2 SWS) and Tutorials (every 2nd week) ;Lecturer :Prof. Dr. Christian Holm and Prof. Dr. Clemens Bechinger (Lecture); Dr. Jens Smiatek (...")
 
 
(69 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
:Lecture (2 SWS) and Tutorials (every 2nd week)
 
:Lecture (2 SWS) and Tutorials (every 2nd week)
 
;Lecturer
 
;Lecturer
:Prof. Dr. [[Christian Holm]] and Prof. Dr. Clemens Bechinger (Lecture); Dr. [[Jens Smiatek]] (Tutorials)
+
:Prof. Dr. [[Christian Holm]] and [http://www.pi2.uni-stuttgart.de/contact/index.php?article_id=80&id=cb2 Prof. Dr. Clemens Bechinger] (Lecture); Dr. [[Jens Smiatek]] and [[Stefan Kesselheim]] (Tutorials)
 
;Course language
 
;Course language
 
:English
 
:English
 
;Location and Time
 
;Location and Time
:Lecture: Thu, 14:00 - 15:30 (Seminar room ICP 1.079, Allmandring 3); Tutorials: tba.
+
:October 17th, 2013 - February 6th, 2014
 +
:Lecture: Thu, 14:00 - 15:30 (Seminar room ICP 1.079, Allmandring 3)  
 +
:Tutorials: Every second week on '''Thursday, 08:00-09:30''' in CIP pool 1.033, ICP, Allmandring 3
 +
 
 
; Prerequisites
 
; Prerequisites
 
: B. Sc. 5. Semester or Master
 
: B. Sc. 5. Semester or Master
 +
 +
== Scope ==
 +
The lecture intends to give an overview about the physics behind soft and biological matter which has been established as a novel interdisciplinary research field over the last decades. Soft matter typically includes
 +
easily deformable objects like colloids, polymers/polyelectrolytes, membranes, liquid crystals as well as vesicles and micelles. Most soft matter effects are driven by electrostatic, van-der-Waals, solute-solvent as well as
 +
entropic interactions. Typical phenomena include order-disorder phase transitions or aggregation behavior.
 +
The lecture will focus on the physical principles behind the observed effects. In addition, fundamental principles and theories like the DLVO- and the Poisson-Boltzmann theory will be introduced.
 +
The interdisciplinary character of this research field is reflected by the presentation of experimental and theoretical work in addition to numerical simulation results. 
 +
 +
== Recommended literature ==
 +
 +
* Pierre Gilles de Gennes: [http://rmp.aps.org/pdf/RMP/v64/i3/p645_1 ''Soft matter''], Rev. Mod. Phys. '''64''', 645 (1992)
 +
* Richard A. L. Jones: ''Soft Condensed Matter'', Oxford University Press (2002)
 +
* D. Fennell Evans and Hakan Wennerström: ''The Colloidal Domain - Where Physics, Chemistry, Biology, and Technology Meet'', Wiley-VCH (1999)
 +
* Robert J. Hunter: ''Foundations of Colloid Science'', Oxford University Press (2002)
 +
* Gert R. Strobl: ''The Physics of Polymers: Concepts for Understanding Their Structures and Behavior'', Springer (2007)
 +
* Jean-Pierre Hansen and Ian R. McDonald: ''Theory of Simple Liquids'', Academic Press (2006)
 +
* Mohamed Daoud and Claudine E. Williams (Eds.): ''Soft Matter Physics'', Springer (1999)
 +
* Pierre Gilles de Gennes: ''Scaling Concepts in Polymer Physics'', Cornell University Press (1979)
 +
* Ian W. Hamley: ''Introduction to Soft Matter'', J. Wiley (2000).
 +
* Maurice Kleman and Oleg G. Laverntovich: ''Soft Matter Physics: An Introduction'', Springer (2003)
 +
* Jacob Israelachvili: ''Intermolecular and Surface Forces'', Academic Press  (1992)
 +
* Michael Rubinstein and Ralph H. Colby: ''Polymer Physics'', Oxford University Press (2003)
 +
* Gerhard Nägele: [http://hera.physik.uni-konstanz.de/igk/news/workshops/Naegele.pdf ''Lecture Notes: The Physics of Colloidal Soft Matter''] (2004)
 +
 +
== Course Material ==
 +
 +
{| class="wikitable"
 +
|-
 +
!Date !! Subject !! Lecturer || Ressources
 +
 +
|-
 +
|17.10.2013 || Motivation and historical overview || Bechinger || {{Download|Soft_Matter1_WS1314_lecture1_17_10_13.pdf|Lecture Notes}} and [[Media:Lecture_A.pptx|Slides]]
 +
 +
|-
 +
|24.10.2013 || Many-particle systems: description of structural properties || Holm ||  {{Download|Soft_Matter1_WS1314_lecture1_24_10_13.pdf|Lecture Notes}}
 +
 +
|-
 +
|31.10.2013 || Pair interactions between dispersed particles || Bechinger ||  {{Download|Soft_Matter1_WS1314_lecture1_31_10_13.pdf|Lecture Notes}}  {{Download|Soft_Matter1_WS1314_lecture1_24_10_13_ppt.pdf|Slides}}
 +
 +
|-
 +
|07.11.2013 || Poisson-Boltzmann theory || Holm ||
 +
{{Download|Soft_Matter1_WS1314_lecture1_07_11_13.pdf|Lecture Notes}} 
 +
 +
|-
 +
|14.11.2013 || Introduction to polymer physics || Holm ||
 +
{{Download|Soft_Matter1_WS1314_lecture5_14_11_13.pdf|Lecture Notes}} 
 +
 +
|-
 +
|21.11.2013 || Polyelectrolytes I || Holm ||
 +
{{Download|Soft_Matter1_WS1314_lecture5_21_11_13.pdf|Lecture Notes}} 
 +
 +
|-
 +
|28.11.2013 || Polyelectrolytes II || Holm ||
 +
{{Download|Soft_Matter1_WS1314_lecture5_21_11_13.pdf|Lecture Notes}}
 +
(Continued from 21.11.2013)
 +
 +
|-
 +
|05.12.2013 || Experimental techniques  || Bechinger ||
 +
{{Download|Soft_Matter1_WS1314_lecture7_05_12.pdf|Slides}}
 +
{{Download|Soft_Matter1_WS1314_lecture7_05_12_notes.pdf|Notes}}
 +
|-
 +
|12.12.2013 || Phase transitions || Bechinger, Holm ||
 +
{{Download|Soft_Matter1_WS1314_lecture7_12_12_notes.pdf|Lecture Notes}}
 +
|-
 +
|19.12.2013 || Xmas lecture: Soft matter food science  || Bechinger, Holm ||
 +
{{Download|FoodXMas.pdf|Lecture Notes}}
 +
 +
|-
 +
|09.01.2014 || Phase transitions II || Holm ||
 +
{{Download|Lecture10_09_01_notes.pdf|Lecture Notes}}
 +
 +
|-
 +
|16.01.2014 || Depletion interactions I || Bechinger ||
 +
{{Download|Soft_Matter1_WS1314_lecture1_16_01_14.pdf|Slides}}  {{Download|Soft_Matter1_WS1314_lecture1_16_01_14_ppt.pdf|Lecture Notes}}
 +
 +
|-
 +
|23.01.2014 || Depletion interactions II || Bechinger ||
 +
{{Download|Soft_Matter1_WS1314_lecture1_23_01_14_ppt.pdf|Lecture Notes}}
 +
{{Download|Slides_230114.pdf|Slides}}
 +
 +
|-
 +
|30.01.2014 || Biological soft matter || Holm ||
 +
{{Download|Vorlesung14_30.1.2014.pdf|Slides}}
 +
 +
|-
 +
|06.02.2014 || Lab tour || Bechinger ||
 +
|}
 +
 +
== Additional Material ==
 +
<bibentry filelink=yes>deserno01c</bibentry>
 +
<bibentry filelink=yes>alexander84a</bibentry>
 +
<bibentry filelink=yes>aubouy03a</bibentry>
 +
<bibentry filelink=no>barrat03a</bibentry>
 +
{{Download|barrat-hansen-vdw.pdf|Extract on van-der-Waals equation of state}} 
 +
 +
== Work sheets ==
 +
*'''[[Media:Tutorial_1.zip|Worksheet 1 (zip-File with work sheet and literature)]]''': ''1D-Random walk, Langevin equation and atomistic revolution''
 +
** {{DownloadExt|/teaching/2012-ws-sim_methods/slides07.pdf|Slides: Simulating Brownian Motion}}
 +
*'''[[Media:Tutorial_2.zip|Worksheet 2 (zip-File with work sheet and literature)]]''': ''Pair distribution functions and colloids in suspense''
 +
** [http://www.st-andrews.ac.uk/~bds2/ltsn/Edinburgh/lennard-jones/index.html 2D-Molecular Dynamics simulation of Lennard-Jones particles (Java-Applet)]
 +
** [http://igitur-archive.library.uu.nl/chem/2007-0723-200250/lekke_96_colloidsinsuspense.pdf ''Colloids in suspense'' by Poon et al.; ''Physics World'' '''9''', 27, (1996)]
 +
*'''[[Media:Tutorial_3.zip|Worksheet 3 (zip-File with work sheet and literature)]]''': ''Electrostatic screening and polymer properties''
 +
*'''[[Media:Tutorial_4.pdf|Worksheet 4 ]]''': ''Gibbs-Donnan equilibrium and the van-der-Waals equation of state''
 +
*'''[[Media:Tutorial_5.zip|Worksheet 5 (zip-File with work sheet and literature)]]''': ''Microscopy''
 +
*'''[[Media:tutorial_6.pdf|Worksheet 6 ]]''': ''Phase transitions and solubilities''
 +
*'''[[Media:tutorial_7.pdf|Worksheet 7 ]]''': ''Depletion interactions and Total Internal Reflection Microscopy'' {{Download|tirm.dat}}

Latest revision as of 18:51, 30 January 2014

Overview

Type
Lecture (2 SWS) and Tutorials (every 2nd week)
Lecturer
Prof. Dr. Christian Holm and Prof. Dr. Clemens Bechinger (Lecture); Dr. Jens Smiatek and Stefan Kesselheim (Tutorials)
Course language
English
Location and Time
October 17th, 2013 - February 6th, 2014
Lecture: Thu, 14:00 - 15:30 (Seminar room ICP 1.079, Allmandring 3)
Tutorials: Every second week on Thursday, 08:00-09:30 in CIP pool 1.033, ICP, Allmandring 3
Prerequisites
B. Sc. 5. Semester or Master

Scope

The lecture intends to give an overview about the physics behind soft and biological matter which has been established as a novel interdisciplinary research field over the last decades. Soft matter typically includes easily deformable objects like colloids, polymers/polyelectrolytes, membranes, liquid crystals as well as vesicles and micelles. Most soft matter effects are driven by electrostatic, van-der-Waals, solute-solvent as well as entropic interactions. Typical phenomena include order-disorder phase transitions or aggregation behavior. The lecture will focus on the physical principles behind the observed effects. In addition, fundamental principles and theories like the DLVO- and the Poisson-Boltzmann theory will be introduced. The interdisciplinary character of this research field is reflected by the presentation of experimental and theoretical work in addition to numerical simulation results.

Recommended literature

  • Pierre Gilles de Gennes: Soft matter, Rev. Mod. Phys. 64, 645 (1992)
  • Richard A. L. Jones: Soft Condensed Matter, Oxford University Press (2002)
  • D. Fennell Evans and Hakan Wennerström: The Colloidal Domain - Where Physics, Chemistry, Biology, and Technology Meet, Wiley-VCH (1999)
  • Robert J. Hunter: Foundations of Colloid Science, Oxford University Press (2002)
  • Gert R. Strobl: The Physics of Polymers: Concepts for Understanding Their Structures and Behavior, Springer (2007)
  • Jean-Pierre Hansen and Ian R. McDonald: Theory of Simple Liquids, Academic Press (2006)
  • Mohamed Daoud and Claudine E. Williams (Eds.): Soft Matter Physics, Springer (1999)
  • Pierre Gilles de Gennes: Scaling Concepts in Polymer Physics, Cornell University Press (1979)
  • Ian W. Hamley: Introduction to Soft Matter, J. Wiley (2000).
  • Maurice Kleman and Oleg G. Laverntovich: Soft Matter Physics: An Introduction, Springer (2003)
  • Jacob Israelachvili: Intermolecular and Surface Forces, Academic Press (1992)
  • Michael Rubinstein and Ralph H. Colby: Polymer Physics, Oxford University Press (2003)
  • Gerhard Nägele: Lecture Notes: The Physics of Colloidal Soft Matter (2004)

Course Material

Date Subject Lecturer Ressources
17.10.2013 Motivation and historical overview Bechinger application_pdf.pngLecture Notes (181 KB)Info circle.png and Slides
24.10.2013 Many-particle systems: description of structural properties Holm application_pdf.pngLecture Notes (1.19 MB)Info circle.png
31.10.2013 Pair interactions between dispersed particles Bechinger application_pdf.pngLecture Notes (696 KB)Info circle.png application_pdf.pngSlides (3.33 MB)Info circle.png
07.11.2013 Poisson-Boltzmann theory Holm

application_pdf.pngLecture Notes (2.36 MB)Info circle.png

14.11.2013 Introduction to polymer physics Holm

application_pdf.pngLecture Notes (7.79 MB)Info circle.png

21.11.2013 Polyelectrolytes I Holm

application_pdf.pngLecture Notes (3.45 MB)Info circle.png

28.11.2013 Polyelectrolytes II Holm

application_pdf.pngLecture Notes (3.45 MB)Info circle.png (Continued from 21.11.2013)

05.12.2013 Experimental techniques Bechinger

application_pdf.pngSlides (6.2 MB)Info circle.png application_pdf.pngNotes (326 KB)Info circle.png

12.12.2013 Phase transitions Bechinger, Holm

application_pdf.pngLecture Notes (485 KB)Info circle.png

19.12.2013 Xmas lecture: Soft matter food science Bechinger, Holm

application_pdf.pngLecture Notes (4.15 MB)Info circle.png

09.01.2014 Phase transitions II Holm

application_pdf.pngLecture Notes (130 KB)Info circle.png

16.01.2014 Depletion interactions I Bechinger

application_pdf.pngSlides (1.68 MB)Info circle.png application_pdf.pngLecture Notes (262 KB)Info circle.png

23.01.2014 Depletion interactions II Bechinger

application_pdf.pngLecture Notes (25 KB)Info circle.png application_pdf.pngSlides (3.61 MB)Info circle.png

30.01.2014 Biological soft matter Holm

application_pdf.pngSlides (4.34 MB)Info circle.png

06.02.2014 Lab tour Bechinger

Additional Material

application_pdf.pngExtract on van-der-Waals equation of state (2.24 MB)Info circle.png

Work sheets