Sie sind hier: ICP » R. Hilfer » Publikationen

References

1 R. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheology 27 (1983), 201–210.
2 S. Bochner, Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley (1955).
3 J. Cushman and M. Moroni, Statistical mechanics with three-dimensional particle tracking velocimetry in the study of anomalous dispersion, I: Theory. Phys. Fluids 13 (2001), 75–80.
4 D. del-Castillo-Negrete, Fractional diffusion models of anomalous transport. In: R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008), 163–212.
5 M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes. DeGruyter, Berlin, 2nd Ed. (2011).
6 R. Haag, Local Quantum Physics. Springer Verlag, Berlin (1992).
7 R. Hilfer, Classification theory for anequilibrium phase transitions. Phys. Rev. E 48 (1993), 2466–2475.
8 R. Hilfer, Foundations of fractional dynamics. Fractals 3 (1995), 549–556.
9 R. Hilfer, On fractional diffusion and its relation with continuous time random walks. In: A. P. R. Kutner and K. Sznajd-Weron (Eds.), Anomalous Diffusion: From Basis to Applications. Springer, Berlin (1999), 77–82.
10 R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapore (2000).
11 R. Hilfer, Fractional time evolution. In: R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000), 87–130.
12 R. Hilfer, Threefold introduction to fractional derivatives. In: R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008), 17–74.
13 R. Hilfer and L. Anton, Fractional master equations and fractal time random walks. Phys. Rev. E, Rapid Commun. 51 (1995), R848–R851.
14 J. Klafter, S.C. Lim, R. Metzler (Eds.), Fractional Dynamics. Recent Advances. World Scientific, Singapore (2011).
15 R. Klages G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008).
16 N. Landkof, Foundations of Modern Potential Theory. Springer, Berlin (1972).
17 N. Laskin, Principles of fractional quantum mechanics. In: R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008), 393–427; DOI: 10.1142/9789814340595\_0017.
18 P. Levy, Theorie de l’addition des variables aleatoires. Gauthier-Villars, Paris (1937).
19 J. Liouville, Mémoire sur quelques questions de geometrie et de mecanique, et sur un nouveau genre de calcul pour resoudre ces questions. Journal de l’Ecole Polytechnique XIII (1832), 1–69.
20 E. Montroll and G. Weiss, Random walks on lattices, II. J. Math. Phys. 6 (1965), 167–181.
21 R. Nigmatullin. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 133 (1986), 425–430.
22 M. Riesz, Integrales de Riemann-Liouville et potentiels. Acta Sci. Math. (Szeged) 9 (1938), 1–42.
23 M. Riesz, L’integrale de Riemann-Liouville et le probleme de Cauchy. Acta Mathematica 81 (1949), 1–222.
24 Y. Rossikhin and M. Shitikova. Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. J. Eng. Mech. 124 (1998), 1029–1036.
25 I. Schäfer and K. Krüger. Modelling of coils using fractional derivatives. J. of Magnetism and Magnetic Materials 307 (2006), 91–98.
26 W. Schneider and W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.
27 R. Schumer, D. Benson, M. Meerschaert, and S. Wheatcraft, Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrol. 48 (2001), 69–86.
28 V. Uchaikin, Fractional Derivatives for Physicists and Engineers, I. Springer, Berlin (2012).
29 V. Uchaikin, Fractional Derivatives for Physicists and Engineers, II. Springer, Berlin (2013).