Sie sind hier: ICP » R. Hilfer » Publikationen

2 Method of Calculation

[page 639, §1]   

2.1 Recursion Relation

[639.1.1] In the rest of this paper \alpha and \beta are real numbers with \alpha>0. [639.1.2] Calculating \mbox{\rm E}_{{\alpha,\beta}}(z) for the case \alpha>1 can be reduced to the case 0<\alpha\leq 1 by virtue of the recursion relation [2, 21]

\mbox{\rm E}_{{\alpha,\beta}}(z)=\frac{1}{2m+1}\sum _{{h=-m}}^{m}\mbox{\rm E}_{{{\alpha/(2m+1)},\beta}}(z^{{1/(2m+1)}}e^{{2\pi{\rm i}h/(2m+1)}}) (6)

valid for all \beta\in\mathbb{R}, z\in\mathbb{C} where m=[(\alpha-1)/2]+1. [639.1.3] Here [x] denotes the largest integer smaller than x. [639.1.4] Because of the recursion we consider only the case 0<\alpha\leq 1 in the following.

2.2 Regions

[639.2.1] For 0<\alpha\leq 1 the complex z-plane is partitioned into four regions \mathbb{G}_{0}, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}. [639.2.2] In each region a different method is used for the calculation of the Mittag-Leffler function. [639.2.3] The central region

\mathbb{G}_{0}=\overline{\mathbb{D}(r_{0})}=\{ z\in\mathbb{C}:|z|\leq r_{0}\} (7)

is the closure of the open disk \mathbb{D}(r_{0})=\{ z\in\mathbb{C}:|z|<r_{0}\} of radius r_{0}<1 centered at the origin. [639.2.4] In our numerical calculations we have chosen r_{0}=0.9 throughout. [639.2.5] The regions \mathbb{G}_{1},\mathbb{G}_{2} are defined by

\displaystyle\mathbb{G}_{1} \displaystyle=\mathbb{W}^{+}(5\pi\alpha/6)\setminus\mathbb{G}_{0} (8)
\displaystyle\mathbb{G}_{2} \displaystyle=\mathbb{C}\setminus(\mathbb{G}_{1}\cup\mathbb{G}_{0}) (9)

where

\mathbb{W}^{+}(\phi)=\{ z\in\mathbb{C}:|\arg(z)|<\phi\} (10)

is the open wedge with opening angle \phi,\,(0<\phi<\pi). [639.2.6] For future reference we define also the (left) wedge

\mathbb{W}^{-}(\phi)=\{ z\in\mathbb{C}:\phi<|\arg(z)|\leq\pi\} (11)

[639.2.7] Finally the region \mathbb{G}_{3} is defined as

\mathbb{G}_{3}=\mathbb{C}\setminus\mathbb{D}(r_{1})=\{ z\in\mathbb{C}:|z|>r_{1}\} (12)

where r_{1}>r_{0} will be defined below.

2.3 Taylor series

[639.3.1] For z\in\mathbb{G}_{0}, i.e. for the central disk region (with r_{0}=0.9), the Mittag-Leffler function is computed from truncating its Taylor series (1). [639.3.2] For given z\in\mathbb{G}_{0} and accuracy \epsilon we choose [page 640, §0]    N such that

\left|\mbox{\rm E}_{{\alpha,\beta}}(z)-\sum _{{k=0}}^{N}\frac{z^{k}}{\Gamma(\alpha k+\beta)}\right|\leq\epsilon (13)

holds. [640.0.1] The dependence of N on the accuracy \epsilon and other parameters is found as

N\geq\max\Big\{\left[(2-\beta)/\alpha\right]+1,\left[\frac{\ln(\epsilon(1-|z|))}{\ln(|z|)}\right]+1\Big\}. (14)

2.4 Integral Representations

[640.1.1] We start from the basic integral representation [2, p. 210]

\mbox{\rm E}_{{\alpha,\beta}}(z)=\frac{1}{2\pi{\rm i}}\int\limits _{{\mathcal{C}}}\frac{y^{{\alpha-\beta}}{\mathrm{e}}^{y}}{y^{\alpha}-z}\mbox{\rm d}y (15)

where the path of integration \mathcal{C} in the complex plane starts and ends at -\infty and encircles the circular disc |y|\leq|z|^{{1/\alpha}} in the positive sense. [640.1.2] When this integral is evaluated several cases arise. [640.1.3] For z\in\mathbb{G}_{1} we distinguish the cases \beta\leq 1 and \beta>1 and compute the Mittag-Leffler function from the integral representations [22]

\displaystyle\mbox{\rm E}_{{\alpha,\beta}}(z) \displaystyle=A\left(z;\alpha,\beta,0\right)+\int\limits _{0}^{\infty}B(r;\alpha,\beta,z,\pi\alpha)\mbox{\rm d}r\,, \displaystyle\beta\leq 1 (16)
\displaystyle\mbox{\rm E}_{{\alpha,\beta}}(z) \displaystyle=A\left(z;\alpha,\beta,0\right)+\int\limits _{{1/2}}^{\infty}B(r;\alpha,\beta,z,\pi\alpha)\mbox{\rm d}r+\int\limits _{{-\pi\alpha}}^{{\pi\alpha}}C(\varphi;\alpha,\beta,z,1/2)\mbox{\rm d}\varphi\,, \displaystyle\beta>1 (17)

where

A(z;\alpha,\beta,x)=\frac{1}{\alpha}z^{{(1-\beta)/\alpha}}\exp\left[z^{{1/\alpha}}\cos(x/\alpha)\right] (18)
B(r;\alpha,\beta,z,\phi)=\frac{1}{\pi}A(r;\alpha,\beta,\phi)\frac{r\sin[\omega(r,\phi,\alpha,\beta)-\phi]-z\sin[\omega(r,\phi,\alpha,\beta)]}{r^{2}-2rz\cos\phi+z^{2}} (19)
C(\varphi;\alpha,\beta,z,\rho)=\frac{\rho}{2\pi}A(\rho;\alpha,\beta,\varphi)\frac{\cos[\omega(\rho,\varphi,\alpha,\beta)]+{\rm i}\sin[\omega(\rho,\varphi,\alpha,\beta)]}{\rho(\cos\varphi+{\rm i}\sin\varphi)-z} (20)
\omega(x,y,\alpha,\beta)=x^{{1/\alpha}}\sin(y/\alpha)+y(1+(1-\beta)/\alpha). (21)

[640.1.4] For z\in\mathbb{G}_{2} the integral representations read

\displaystyle\mbox{\rm E}_{{\alpha,\beta}}(z) \displaystyle=\int\limits _{0}^{\infty}B(r;\alpha,\beta,z,2\pi\alpha/3)\mbox{\rm d}r\,, \displaystyle\beta\leq 1 (22)
\displaystyle\mbox{\rm E}_{{\alpha,\beta}}(z) \displaystyle=\int\limits _{{1/2}}^{\infty}B(r;\alpha,\beta,z,2\pi\alpha/3)\mbox{\rm d}r+\int\limits _{{-2\pi\alpha/3}}^{{2\pi\alpha/3}}C(\varphi;\alpha,\beta,z,1/2)\mbox{\rm d}\varphi\,, \displaystyle\beta>1 (23)

where the integrands have been defined in eq. (18)–(21) above.

[page 641, §1]   
[641.1.1] The integrand C(\varphi;\alpha,\beta,z,\rho) is oscillatory but bounded over the integration interval. [641.1.2] Thus the integrals over C can be evaluated numerically using any appropriate quadrature formula. [641.1.3] We use a robust Gauss-Lobatto quadrature.

[641.2.1] The integrals over B(r;\alpha,\beta,z,\phi) involve infinite intervals. [641.2.2] For given z\in\mathbb{G}_{1} (resp. z\in\mathbb{G}_{2}) and accuracy \epsilon we approximate the integrals by truncation. [641.2.3] The error

\left|\int\limits _{{{R_{{\rm max}}}}}^{\infty}B(r;\alpha,\beta,z,\phi)\mbox{\rm d}r\right|<\epsilon (24)

depends on the truncation point {R_{{\rm max}}}. [641.2.4] For \phi=\pi\alpha we find

{R_{{\rm max}}}\geq\left\{\begin{array}[]{ll}\max\left\{ 1,\, 2|z|,\,\left(-\ln\frac{\displaystyle\pi\epsilon}{\displaystyle 6}\right)^{\alpha}\right\},&\beta\geq 0\\
\\
\max\left\{(|\beta|+1)^{\alpha},\, 2|z|,\,\left(-2\ln\left(\frac{\displaystyle\pi\epsilon}{\displaystyle 6(|\beta|+2)(2|\beta|)^{{|\beta|}}}\right)\right)^{\alpha}\right\},&\beta<0,\\
\end{array}\right. (25)

while for \phi=2\pi\alpha/3 we have

{R_{{\rm max}}}\geq\left\{\begin{array}[]{ll}\max\left\{ 2^{\alpha},\, 2|z|,\,\left(-2\ln\frac{\displaystyle\pi 2^{\beta}\epsilon}{\displaystyle 12}\right)^{\alpha}\right\},&\beta\geq 0\\
\\
\max\left\{[2(|\beta|+1)]^{\alpha},\, 2|z|,\left[-4\ln\frac{\displaystyle\pi 2^{\beta}\epsilon}{\displaystyle 12\left(|\beta|+2\right)(4|\beta|)^{{|\beta|}}}\right]^{\alpha}\right\},&\beta<0.\end{array}\right. (26)

2.5 Exponential Asymptotics

[641.3.1] The asymptotic expansions given in eqs. (21) and (22) on page 210 in Ref. [2] indicate that the Mittag-Leffler function exhibits a Stokes phenomenon. [641.3.2] The Stokes lines are the rays \arg(z)=\pm\alpha\pi and it was recently shown in [23] that a Berry-type smoothing applies. [641.3.3] The exponentially improved asymptotic expansions will be used here for computing \mbox{\rm E}_{{\alpha,\beta}}(z) for z\in\mathbb{G}_{3}. [641.3.4] More precisely for 0<\alpha<1 we use the following exponentially improved uniform asymptotic expansions [23] :

\mbox{\rm E}_{{\alpha,\beta}}(z)=-\sum _{{k=1}}^{M}\frac{z^{{-k}}}{\Gamma(\beta-\alpha k)}+O\left(|z|^{{(1/2-\beta)/\alpha}}{\mathrm{e}}^{{-|z|^{{1/\alpha}}}}\right) (27)

for z\in\mathbb{G}_{3}\cap\mathbb{W}^{-}(\alpha\pi+\delta)

\mbox{\rm E}_{{\alpha,\beta}}(z)=\frac{1}{\alpha}z^{{(1-\beta)/\alpha}}{\mathrm{e}}^{{z^{{1/\alpha}}}}-\sum _{{k=1}}^{M}\frac{z^{{-k}}}{\Gamma(\beta-\alpha k)}+O\left(|z|^{{(1/2-\beta)/\alpha}}{\mathrm{e}}^{{-|z|^{{1/\alpha}}}}\right) (28)

for z\in\mathbb{G}_{3}\cap\mathbb{W}^{+}(\alpha\pi-\delta),

\displaystyle\mbox{\rm E}_{{\alpha,\beta}}(z) \displaystyle=\frac{1}{2\alpha}z^{{(1-\beta)/\alpha}}{\mathrm{e}}^{{z^{{1/\alpha}}}}\operatorname{erfc}\left((c^{3}/36-{\rm i}c^{2}/6-c)\sqrt{|z|^{{1/\alpha}}/2}\right)
\displaystyle-\sum _{{k=1}}^{M}\frac{z^{{-k}}}{\Gamma(\beta-\alpha k)}+O\left(|z|^{{(1/2-\beta)/\alpha}}{\mathrm{e}}^{{-|z|^{{1/\alpha}}}}\right) (29)

[page 642, §0]    for z\in\mathbb{G}_{3} with -\alpha\pi-\delta\leq\arg(z)\leq-\alpha\pi+\delta and c=\arg(z^{{1/\alpha}})+\pi, and

\displaystyle\mbox{\rm E}_{{\alpha,\beta}}(z) \displaystyle=\frac{1}{2\alpha}z^{{(1-\beta)/\alpha}}{\mathrm{e}}^{{z^{{1/\alpha}}}}\operatorname{erfc}\left((c+{\rm i}c^{2}/6-c^{3}/36)\sqrt{|z|^{{1/\alpha}}/2}\right)
\displaystyle-\sum _{{k=1}}^{M}\frac{z^{{-k}}}{\Gamma(\beta-\alpha k)}+O\left(|z|^{{(1/2-\beta)/\alpha}}{\mathrm{e}}^{{-|z|^{{1/\alpha}}}}\right) (30)

for z\in\mathbb{G}_{3} with \alpha\pi-\delta\leq\arg(z)\leq\alpha\pi+\delta and c=\arg(z^{{1/\alpha}})-\pi. [642.0.1] Here \delta>0 is a small number, in practice we use \delta=0.01. [642.0.2] In eqs. (2.5) and (2.5)

\operatorname{erfc}(z)=\frac{2}{\sqrt{\pi}}\int\limits _{z}^{\infty}{\mathrm{e}}^{{y^{2}/2}}\mbox{\rm d}y (31)

denotes the complex complementary error function. [642.0.3] Note the difference between eqs. (27)–(2.5) and the expansions in [2, p. 210]. [642.0.4] We take

M=\min\{ 50,[|z|^{{1/\alpha}}/\alpha]\} (32)

to truncate the asymptotic series. [642.0.5] Choosing for \epsilon the machine precision we fix the radius r_{1} in \mathbb{G}_{3} at

r_{1}=\frac{1}{[\epsilon\Gamma(\beta-\alpha M)]^{{1/M}}}. (33)

[642.0.6] The remainder estimates in eqs. (27)–(2.5) are only valid for a value of M that is chosen in an optimal sense as in eqs. (32) and (33).