Sie sind hier: ICP » R. Hilfer » Publikationen

7 Results

[635.1.1] The time evolution of almost invariant states can be defined by the addition of random recurrence times. [635.1.2] Let p_{N}(k) be the probability density of the sum

W_{N}=w_{1}+\dots+w_{N} (40)

of N\geq 1 independent and identically-distributed random recurrence times w_{i}\geq 1. [635.1.3] Let p(k) from Equation (39) be the common probability density of all w_{i}. [635.1.4] Then, with N\geq 2 and p_{1}(k)=p(k),

\displaystyle p_{N}(k)=(p_{{N-1}}*p)(k)=\sum _{{m=0}}^{k}p_{{N-1}}(m)p(k-m) (41)

is an N-fold convolution of the discrete recurrence time density in Equation (39). [635.1.5] The family of distributions p_{N}(k) obeys

\displaystyle p_{N}(\infty)+\sum _{{k=1}}^{\infty}p_{N}(k)=1 (42)

for all N\geq 1, and the discrete analogue of Equation (5)

\displaystyle p_{{N+M}}(k)=(p_{N}*p_{M})(k) (43)

holds for all N,M\geq 1. [635.1.6] Because the individual states in \mathsf{G} are indistinguishable within the given accuracy \eta, but may evolve very differently in time, it is natural to define the duration of time needed for the first recurrence (a single time step) as an average

\displaystyle\mathscr{S}^{{-1}}=\sum _{{k=1}}^{\infty}p(k)\;\mathscr{T}^{{-k}} (44)

over recurrence times. [635.1.7] If a macroscopic time evolution with a rescaled time exists, then one has to rescale the sums W_{N} and the iterations

\displaystyle\mathscr{S}^{{-N}}=\mathscr{S}^{{-(N-1)}}\mathscr{S}^{{-1}}=\sum _{{k=1}}^{\infty}p_{N}(k)\;\mathscr{T}^{{-k}} (45)

in the limit N\to\infty with suitable norming constants D_{N}\geq 0.

Theorem 3.

[635.1.8] Let p_{N}(k) be the probability density of W_{N} specified above in (41). [635.1.9] If the distributions of W_{N}/D_{N} converge to a limit as N\to\infty for suitable norming constants D_{N}\geq 0, then there exist constants D\geq 0 and 0<\alpha\leq 1, such that

\lim _{{N\to\infty}}\sup _{k}\left|D_{N}p_{N}(k)-\frac{\tau}{D^{{1/\alpha}}}h_{\alpha}\left(\frac{k\tau}{D_{N}D^{{1/\alpha}}}\right)\right|=0 (46)

[page 636, §0]    where:

\alpha=\sup\{ 0<\beta<1:\sum _{{k=1}}^{\infty}k^{\beta}p(k)<\infty\} (47)

if \sum _{{k=1}}^{\infty}kp(k) diverges, while

\alpha=1 (48)

if \sum _{{k=1}}^{\infty}kp(k) converges. [636.0.1] For \alpha=1, the function h_{\alpha}(x) is h_{1}(x)=\delta(x-1). [636.0.2] For 0<\alpha<1, the function h_{\alpha}(x)=0 for x\leq 0 and

h_{\alpha}(x)=\frac{1}{x}\sum _{{j=0}}^{\infty}\frac{(-1)^{j}x^{{-\alpha j}}}{j!\;\Gamma(-\alpha j)} (49)

for x>0.

Proof.

[636.1.1] The existence of a limiting distribution for W_{N}/D_{N}>0 is known to be equivalent to the stability of the limit [18]. [636.1.2] If the limit distribution is nondegenerate, this implies that the rescaling constants D_{N} have the form

D_{N}=\left(N\Lambda(N)\right)^{{1/\alpha}} (50)

where \Lambda(N) is a slowly varying function [19], defined by the requirement that

\lim _{{x\to\infty}}\frac{\Lambda(bx)}{\Lambda(x)}=1 (51)

holds for all b>0. [636.1.3] That the number \alpha obeys Equation (47) is proven in [18] (p. 179). [636.1.4] It is bounded as 0<\alpha\leq 1, because the rescaled random variables W_{N}/D_{N}>0 are positive.

[636.2.1] To prove Equation (46), note that the characteristic function of W_{N} is the N-th power

\displaystyle\langle\mathrm{e}^{{\mathrm{i}\xi W_{N}}}\rangle=\left[p(\xi)\right]^{N}=\sum _{k}\mathrm{e}^{{\mathrm{i}\xi y}}p_{N}(k) (52)

because the characteristic functions p(\xi)=\langle\mathrm{e}^{{\mathrm{i}\xi w_{j}}}\rangle of w_{j} are identical for all j=1,...,N. [636.2.2] Inverse Fourier transformation gives:

\displaystyle p_{N}(k)=\frac{1}{2\pi}\int\limits _{{-\pi}}^{{\pi}}\mathrm{e}^{{-\mathrm{i}\xi k}}\left[p(\xi)\right]^{N}\mathrm{d}\xi=\frac{\tau}{2\pi D_{N}D^{{1/\alpha}}}\int\limits _{{-\pi D_{N}D^{{1/\alpha}}}}^{{\pi D_{N}D^{{1/\alpha}}}}\mathrm{e}^{{-\mathrm{i}\xi x}}\left[p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)\right]^{N}\mathrm{d}\xi (53)

where:

\displaystyle x=x_{{kN}}=\frac{k\tau}{D_{N}D^{{1/\alpha}}} (54)

and \xi was substituted with (\xi\tau)/(D_{N}D^{{1/\alpha}}). [636.2.3] Let h_{\alpha}(\xi) denote the characteristic function of h_{\alpha}(x), so that

\displaystyle h_{\alpha}(x)=\frac{1}{2\pi}\int\limits _{{-\infty}}^{{\infty}}\mathrm{e}^{{-\mathrm{i}x\xi}}h_{\alpha}(\xi)\mathrm{d}\xi (55)

holds.

[page 637, §1]    [637.1.1] Following [20], the difference \Delta _{N}(k) in (46) can be decomposed and bounded from above as

\displaystyle\Delta _{N}(k) \displaystyle=\left|D_{N}p_{N}(k)-\frac{\tau}{D^{{1/\alpha}}}h_{\alpha}\left(\frac{k\tau}{D_{N}D^{{1/\alpha}}}\right)\right|=\left|D_{N}p_{N}(k)-\frac{\tau}{D^{{1/\alpha}}}h_{\alpha}\left(x\right)\right|
\displaystyle=\frac{\tau}{2\pi D^{{1/\alpha}}}\left|\int\limits _{{-\pi D_{N}D^{{1/\alpha}}}}^{{\pi D_{N}D^{{1/\alpha}}}}\mathrm{e}^{{-\mathrm{i}\xi x}}\left[p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)\right]^{N}\mathrm{d}\xi-\int\limits _{{-\infty}}^{{\infty}}\mathrm{e}^{{-\mathrm{i}\xi x}}\  h_{\alpha}(\xi)\mathrm{d}\xi\right|
\displaystyle=\frac{\tau}{2\pi D^{{1/\alpha}}}\left|\;\int\limits _{{|\xi|<B}}\mathrm{e}^{{-\mathrm{i}\xi x}}\left[p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)^{N}-h_{\alpha}(\xi)\right]\mathrm{d}\xi+\int\limits _{{B\leq|\xi|<\eta D_{N}D^{{1/\alpha}}}}\mathrm{e}^{{-\mathrm{i}\xi x}}\left[p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)^{N}-h_{\alpha}(\xi)\right]\mathrm{d}\xi\right.
\displaystyle\qquad\left.+\int\limits _{{\eta\leq\frac{|\xi|}{D_{N}D^{{1/\alpha}}}<\pi}}\mathrm{e}^{{-\mathrm{i}\xi x}}\left[p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)^{N}-h_{\alpha}(\xi)\right]\mathrm{d}\xi-\int\limits _{{|\xi|\geq\pi D_{N}D^{{1/\alpha}}}}\mathrm{e}^{{-\mathrm{i}\xi x}}\  h_{\alpha}(\xi)\mathrm{d}\xi\right|
\displaystyle\leq\frac{\tau}{2\pi D^{{1/\alpha}}}\left(\int\limits _{{|\xi|<B}}\left|p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)^{N}-h_{\alpha}(\xi)\right|\mathrm{d}\xi+\int\limits _{{B\leq|\xi|<\eta D_{N}D^{{1/\alpha}}}}\left|p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)\right|^{N}\mathrm{d}\xi\right.
\displaystyle\qquad\left.+\int\limits _{{\eta\leq\frac{|\xi|}{D_{N}D^{{1/\alpha}}}<\pi}}\left|p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)\right|^{N}\mathrm{d}\xi+\int\limits _{{|\xi|\geq B}}h_{\alpha}(\xi)\mathrm{d}\xi\right) (56)

with constants B,\eta to be specified below. [637.1.2] The terms involving h_{\alpha}(\xi) from the second and third integral have been absorbed in the fourth integral. [637.1.3] The four integrals are now discussed further individually.

[637.2.1] The first integral converges uniformly to zero for N\to\infty, because p(k) belongs to the domain of attraction of a stable law with index \alpha, as already noted above.

[637.3.1] To estimate the second integral, note that the characteristic function p(\xi) belongs to the domain of attraction for index \alpha if and only if it behaves for |\xi|\to 0 as [20]

\displaystyle|p(\xi)|=\exp\left\{-c|\xi|^{\alpha}\Lambda\left(\frac{1}{|\xi|}\right)\right\} (57)

where c>0 and \Lambda(x) is a slowly varying function at infinity obeying

\displaystyle\lim _{{N\to\infty}}\frac{N\Lambda(D_{N})}{D_{N}^{\alpha}}=1 (58)

[637.3.2] By the representation theorem for slowly varying functions ([21] p. 12), there exist functions d(y) and \varepsilon(y), such that the function \Lambda(y) can be represented as

\displaystyle\Lambda(y)=d(y)\exp\left\{-\int\limits _{b}^{y}\frac{\varepsilon(u)}{u}\mathrm{d}u\right\} (59)

[page 638, §0]    for some b>0 where d(y) is measurable and d(y)\to d\in(0,\infty), as well as \varepsilon(u)\to 0 hold for y\to\infty. [638.0.1] As a consequence

\displaystyle\frac{\Lambda(\lambda y)}{\Lambda(y)}=\frac{d(\lambda y)}{d(y)}\exp\left\{-\int\limits _{{y}}^{{\lambda y}}\frac{\varepsilon(u)}{u}\mathrm{d}u\right\} (60)

so that with \lambda=|\xi|^{{-1}} and y=D_{N}

\displaystyle\frac{\Lambda(D_{N}/|\xi|)}{\Lambda(D_{N})}=|\xi|^{{o(1)}}(1+o(1)) (61)

is obtained for N\to\infty. [638.0.2] Therefore, there exists for any \gamma<\alpha a positive number c(\gamma) independent of N, such that

\displaystyle|p_{N}(\xi)|=\left|p\left(\frac{\xi}{D_{N}}\right)\right|^{N}=\left|\exp\left\{-\frac{cN}{D_{N}^{\alpha}}\frac{\Lambda(D_{N})}{\Lambda(D_{N})}\Lambda\left(\frac{D_{N}}{\xi}\right)|\xi|^{\alpha}\right\}\right|\leq\exp\left\{-c(\gamma)|\xi|^{\gamma}\right\} (62)

for sufficiently large N. [638.0.3] If N is sufficiently large, it is then possible to choose an \eta>0 (and find \widetilde{c}(\gamma)), such that

\int\limits _{{B\leq|\xi|<\eta D_{N}D^{{1/\alpha}}}}\left|p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)\right|^{N}\mathrm{d}\xi\leq\int\limits _{{B\leq|\xi|<\eta D_{N}D^{{1/\alpha}}}}\exp\left\{-\widetilde{c}\left(\frac{\alpha}{2}\right)|\xi|^{{\frac{\alpha}{2}}}\right\}\mathrm{d}\xi\leq\int\limits _{{|\xi|\geq B}}\exp\left\{-\widetilde{c}\left(\frac{\alpha}{2}\right)|\xi|^{{\frac{\alpha}{2}}}\right\}\mathrm{d}\xi (63)

and this converges to zero for B\to\infty.

[638.1.1] The third integral is estimated by noting that |p(\xi)|<1 for 0<|\xi|<2\pi/\tau. [638.1.2] Hence, there is a positive constant c>0, such that

\displaystyle|p(\xi)|\leq\mathrm{e}^{{-c}} (64)

for \eta\leq|\xi|\leq\pi. [638.1.3] Consequently, with Equation (50),

\displaystyle\int\limits _{{\eta\leq\frac{|\xi|}{D_{N}D^{{1/\alpha}}}<\pi}}\left|p\left(\frac{\xi\tau}{D_{N}D^{{1/\alpha}}}\right)\right|^{N}\mathrm{d}\xi\leq 2\pi\mathrm{e}^{{-cN}}\left[N\Lambda(N)D\right]^{{1/\alpha}} (65)

converges to zero as N\to\infty.

[638.2.1] Finally, the fourth integral converges to zero, because the characteristic function h_{\alpha}(\xi) is integrable on \mathbb{R}. [638.2.2] In summary, all four terms in Equation (56) vanish for N\to\infty, and Equation (46) holds. ∎

[638.3.1] Equation (46) implies

p_{N}(k)\approx\frac{\tau}{D_{N}D^{{1/\alpha}}}\; h_{\alpha}\left(\frac{k\tau}{D_{N}D^{{1/\alpha}}}\right) (66)

for sufficiently large N and all \tau. [638.3.2] Inserting this into Equation (45) gives

\mathscr{S}^{{-N}}=\sum _{{k=1}}^{\infty}p_{N}(k)\;\mathscr{T}^{{-k}}\approx\sum _{{k=1}}^{\infty}\frac{\tau}{D_{N}D^{{1/\alpha}}}\; h_{\alpha}\left(\frac{k\tau}{D_{N}D^{{1/\alpha}}}\right)\;\mathscr{T}^{{-k}}=\sum _{{k=1}}^{\infty}h_{\alpha}\left(\frac{k\tau}{D_{N}D^{{1/\alpha}}}\right)\;\mathscr{T}^{{-k}}\;\frac{[k-(k-1)]\tau}{D_{N}D^{{1/\alpha}}} (67)

[page 639, §0]    [639.0.1] For \alpha=1, the average return time \tau\sum _{k}kp(k)<\infty is proportional to the discretization \tau. [639.0.2] In the case 0<\alpha<1, the average time \tau\sum _{k}kp(k)=\infty for return into the set \mathsf{G} in a single step diverges. [639.0.3] This suggests an infinite rescaling of time as \tau\to\infty for 0<\alpha<1. [639.0.4] This rescaling of time combined with N\to\infty was called the ultra-long-time limit in [22]. [639.0.5] In the ultra-long-time limit N\to\infty,\tau\to\infty with:

\displaystyle\lim _{{{\tau\to\infty}\atop{N\to\infty}}}\frac{D_{N}D^{{1/\alpha}}}{\tau}=\lim _{{{\tau\to\infty}\atop{N\to\infty}}}\frac{[N\Lambda(N)D]^{{1/\alpha}}}{\tau}=a (68)

one finds from Equation (67) the result

\displaystyle\lim _{{{\tau\to\infty,N\to\infty}\atop{[N\Lambda(N)D]^{{1/\alpha}}/\tau=a}}}\mathscr{S}^{{-N}}\approx\sum _{{k=1}}^{\infty}h_{\alpha}\left(\frac{k}{a}\right)\;\mathscr{T}^{{-ka}}\;\frac{[k-(k-1)]}{a}\approx\int\limits _{0}^{\infty}h_{\alpha}\left(x\right)\;\mathscr{T}^{{-xa}}\;\mathrm{d}x (69)

for sufficiently large N and \tau. [639.0.6] The limit gives rise to a family of one-parameter semigroups \mathscr{T}^{a}_{{\alpha}} (with family index \alpha and parameter a) of ultra-long-time evolution operators

\displaystyle\lim _{{{\tau\to\infty,N\to\infty}\atop{[N\Lambda(N)D]^{{1/\alpha}}/\tau=a}}}\mathscr{S}^{{-N}}=\mathscr{T}^{{-a}}_{{\alpha}}=\int\limits _{0}^{\infty}h_{\alpha}\left(x\right)\;\mathscr{T}^{{-xa}}\;\mathrm{d}x (70)

which are convolutions instead of translations. [639.0.7] Note that a\geq 0 because D_{N}\geq 0 and D\geq 0. [639.0.8] The rescaled age evolutions \mathscr{T}^{{-a}}_{{\alpha}} are called fractional time evolutions, because their infinitesimal generators are fractional time derivatives [22, 23].

[639.1.1] The result shows that a proper mathematical formulation of local stationarity requires a generalization of the left-hand side in Equation (1), because Equation (1) assumes implicitly a translation along the orbit. [639.1.2] In general, the integration of infinitesimal system changes leads to convolutions instead of just translations along the orbit [22, 23]. [639.1.3] Of course, translations are a special case of convolutions, to which they reduce in the case when the parameter \alpha approaches unity. [639.1.4] For \alpha\to 1^{-}, one finds

h_{1}(x)=\lim _{{\alpha\to 1^{-}}}h_{\alpha}(x)=\delta(x-1) (71)

and therefore

\mathscr{T}^{{-a}}_{{1}}=\int\limits _{0}^{\infty}\delta\left(x-1\right)\;\mathscr{T}^{{-xa}}\;\mathrm{d}x=\mathscr{T}^{{-a}} (72)

is a right translation. [639.1.5] Here, a\geq 0 is an age or duration. [639.1.6] This shows that also the special case of induced right translations does not give a group, but only a semigroup.