Sie sind hier: ICP » R. Hilfer » Publikationen

4 H-Functions

4.1 Definition

[120.1.1] The H-function of order (m,n,p,q)\in\mathbb{N}^{4} and with parameters A_{i}\in\mathbb{R}_{+}(i=1,\ldots,p), B_{i}\in\mathbb{R}_{+}(i=1,\ldots,q), a_{i}\in\mathbb{C}(i=1,\ldots,p), and b_{i}\in\mathbb{C}(i=1,\ldots,q) is defined for z\in\mathbb{C},z\neq 0 by the contour integral [55, 56, 57, 58, 59]

H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=\frac{1}{2\pi i}\int _{{\mathcal{L}}}\eta(s)z^{{-s}}\;\mbox{\rm d}s (153)

where the integrand is

\eta(s)=\frac{\displaystyle\prod _{{i=1}}^{m}\Gamma(b_{i}+B_{i}s)\prod _{{i=1}}^{n}\Gamma(1-a_{i}-A_{i}s)}{\displaystyle\prod _{{i=n+1}}^{p}\Gamma(a_{i}+A_{i}s)\prod _{{i=m+1}}^{q}\Gamma(1-b_{i}-B_{i}s)}. (154)

[page 121, §0]    [121.0.1] In (153) z^{{-s}}=\exp\{-s\log|z|-i\arg z\} and \arg z is not necessarily the principal value. [121.0.2] The integers m,n,p,q must satisfy

0\leq m\leq q,\qquad 0\leq n\leq p, (155)

and empty products are interpreted as being unity. [121.0.3] The parameters are restricted by the condition

\mathbb{P}_{a}\cap\mathbb{P}_{b}=\emptyset (156)

where

\displaystyle\mathbb{P}_{a} \displaystyle=\{\text{poles of }\Gamma(1-a_{i}-A_{i}s)\}=\left\{\frac{1-a_{i}+k}{A_{i}}\in\mathbb{C}:i=1,\ldots,n;k\in\mathbb{N}_{0}\right\}
\displaystyle\mathbb{P}_{b} \displaystyle=\{\text{poles of }\Gamma(b_{i}+B_{i}s)\}=\left\{\frac{-b_{i}-k}{B_{i}}\in\mathbb{C}:i=1,\ldots,m;k\in\mathbb{N}_{0}\right\} (157)

are the poles of the numerator in (154). [121.0.4] The integral converges if one of the following conditions holds [59]

\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(c-i\infty,c+i\infty;\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }|\arg z|<C\pi/2;\text{\ \ \ \ }C>0 (158a)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(c-i\infty,c+i\infty;\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }|\arg z|=C\pi/2;\text{\ \ \ \ }C\geq 0;\text{\ \ \ \ }cD<-\mathrm{Re}\, F (158b)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(-\infty+i\gamma _{1},-\infty+i\gamma _{2};\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }D>0;\text{\ \ \ \ }0<|z|<\infty (159a)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(-\infty+i\gamma _{1},-\infty+i\gamma _{2};\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }D=0;\text{\ \ \ \ }0<|z|<E^{{-1}} (159b)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(-\infty+i\gamma _{1},-\infty+i\gamma _{2};\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }D=0;\text{\ \ \ \ }|z|=E^{{-1}};\text{\ }C\geq 0;\text{\ }\mathrm{Re}\, F<0 (159c)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(\infty+i\gamma _{1},\infty+i\gamma _{2};\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }D<0;\text{\ \ \ \ }0<|z|<\infty (160a)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(\infty+i\gamma _{1},\infty+i\gamma _{2};\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }D=0;\text{\ \ \ \ }|z|>E^{{-1}} (160b)
\displaystyle{\mathcal{L}} \displaystyle={\mathcal{L}}(\infty+i\gamma _{1},\infty+i\gamma _{2};\mathbb{P}_{a},\mathbb{P}_{b});\text{\ \ \ \ }D=0;\text{\ \ \ \ }|z|=E^{{-1}};\text{\ }C\geq 0;\text{\ }\mathrm{Re}\, F<0 (160c)

where \gamma _{1}<\gamma _{2}. [121.0.5] Here {\mathcal{L}}(z_{1},z_{2};\mathbb{G}_{1},\mathbb{G}_{2}) denotes a contour in the complex plane starting at z_{1} and ending at z_{2} and separating the points in \mathbb{G}_{1} from those

[page 122, §0]    in \mathbb{G}_{2}, and the notation

\displaystyle C \displaystyle=\sum _{{i=1}}^{n}A_{i}-\sum _{{i=n+1}}^{p}A_{i}+\sum _{{i=1}}^{m}B_{i}-\sum _{{i=m+1}}^{q}B_{i} (161)
\displaystyle D \displaystyle=\sum _{{i=1}}^{q}B_{i}-\sum _{{i=1}}^{p}A_{i} (162)
\displaystyle E \displaystyle=\prod _{{i=1}}^{p}A^{{A_{i}}}_{i}\prod _{{i=1}}^{q}B^{{-B_{i}}}_{i} (163)
\displaystyle F \displaystyle=\sum _{{i=1}}^{q}b_{i}-\sum _{{i=1}}^{p}a_{j}+(p-q)/2+1 (164)

was employed. [122.0.1] The H-functions are analytic for z\neq 0 and multivalued (single valued on the Riemann surface of \log z).

4.2 Basic Properties

[122.1.1] From the definition of the H-functions follow some basic properties. [122.1.2] Let S_{n}(n\geq 1) denote the symmetric group of n elements, and let \pi _{n} denote a permutation in S_{n}. [122.1.3] Then the product structure of (154) implies that for all \pi _{n}\in S_{n},\pi _{m}\in S_{m},\pi _{{p-n}}\in S_{{p-n}} and \pi _{{q-m}}\in S_{{q-m}}

H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{P_{n},P_{{p-n}}}\\
{P_{m},P_{{q-m}}}\end{array}\right.\right) (165)

where the parameter permutations

\displaystyle P_{n} \displaystyle=(a_{{\pi _{n}(1)}},A_{{\pi _{n}(1)}}),\ldots,(a_{{\pi _{n}(n)}},A_{{\pi _{n}(n)}})
\displaystyle P_{{p-n}} \displaystyle=(a_{{\pi _{{p-n}}(n+1)}},A_{{\pi _{{p-n}}(n+1)}}),\ldots,(a_{{\pi _{{p-n}}(p)}},A_{{\pi _{{p-n}}(p)}})
\displaystyle P_{m} \displaystyle=(b_{{\pi _{m}(1)}},B_{{\pi _{m}(1)}}),\ldots,(b_{{\pi _{m}(m)}},B_{{\pi _{m}(m)}}) (166)
\displaystyle P_{{q-m}} \displaystyle=(b_{{\pi _{{q-m}}(m+1)}},B_{{\pi _{{q-m}}(m+1)}}),\ldots,(b_{{\pi _{{q-m}}(q)}},B_{{\pi _{{q-m}}(q)}})

have to be inserted on the right hand side. [122.1.4] If any of n,m,p-n or q-m vanishes the corresponding permutation is absent.

[122.2.1] The order reduction formula

H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),(a_{2},A_{2})\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),(b_{2},B_{2})\ldots,(b_{{q-1}},B_{{q-1}})(a_{1},A_{1})}\end{array}\right.\right)=H^{{m,n-1}}_{{p-1,q-1}}\left(z\left|\begin{array}[]{l}{(a_{2},A_{2}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{{q-1}},B_{{q-1}})}\end{array}\right.\right) (167)

[page 123, §0]    holds for n\geq 1 and q>m, and similarly

H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),(a_{2},A_{2})\ldots,(a_{{p-1}},A_{{p-1}})(b_{1},B_{1})}\\
{(b_{1},B_{1}),(b_{2},B_{2})\ldots,(b_{q},B_{q})}\end{array}\right.\right)=H^{{m-1,n}}_{{p-1,q-1}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{{p-1}},A_{{p-1}})}\\
{(b_{2},B_{2}),\ldots,(b_{q},B_{q})}\end{array}\right.\right) (168)

for m\geq 1 and p>n. [123.0.1] The formula

H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a,0),(a_{2},A_{2})\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=\Gamma(1-a)H^{{m,n-1}}_{{p-1,q}}\left(z\left|\begin{array}[]{l}{(a_{2},A_{2}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right) (169)

holds for n\geq 1 and \mathrm{Re}\,(1-a)>0. [123.0.2] Analogous formulae are readily found if a parameter pair (a,0) or (b,0) appears in one of the other groups.

[123.1.1] A change of variables in (153) shows

H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=H^{{n,m}}_{{q,p}}\left(\frac{1}{z}\left|\begin{array}[]{l}{(1-b_{1},B_{1}),\ldots,(1-b_{q},B_{q})}\\
{(1-a_{1},A_{1}),\ldots,(1-a_{p},A_{p})}\end{array}\right.\right) (170)

which allows to transform an H-function with D>0 and \arg z to one with D<0 and \arg(1/z). [123.1.2] For \gamma>0

\frac{1}{\gamma}H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=H^{{m,n}}_{{p,q}}\left(z^{\gamma}\left|\begin{array}[]{l}{(a_{1},\gamma A_{1}),\ldots,(a_{p},\gamma A_{p})}\\
{(b_{1},\gamma B_{1}),\ldots,(b_{q},\gamma B_{q})}\end{array}\right.\right) (171)

while for \gamma\in\mathbb{R}

z^{\gamma}H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1}+\gamma A_{1},A_{1}),\ldots,(a_{p}+\gamma A_{p},A_{p})}\\
{(b_{1}+\gamma B_{1},B_{1}),\ldots,(b_{q}+\gamma B_{q},B_{q})}\end{array}\right.\right) (172)

[page 124, §0]    holds.

[124.1.1] For m=0 with conditions (159) the integrand is analytic and thus

H^{{0,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=0. (173)

4.3 Integral Transformations

[124.2.1] The definition of an H-function in eq. (153) becomes an inverse Mellin transform if {\mathcal{L}} is chosen parallel to the imaginary axis inside the strip

\max _{{1\leq i\leq m}}\mathrm{Re}\,\frac{-b_{i}}{B_{i}}<s<\min _{{1\leq i\leq m}}\mathrm{Re}\,\frac{1-a_{i}}{A_{i}} (174)

by the Mellin inversion theorem [60]. [124.2.2] Therefore

{\mathcal{M}}\left\{ H^{{m,n}}_{{p,q}}(z)\right\}(s)=\eta(s)=\frac{\displaystyle\prod _{{i=1}}^{m}\Gamma(b_{i}+B_{i}s)\prod _{{i=1}}^{n}\Gamma(1-a_{i}-A_{i}s)}{\displaystyle\prod _{{i=n+1}}^{p}\Gamma(a_{i}+A_{i}s)\prod _{{i=m+1}}^{q}\Gamma(1-b_{i}-B_{i}s)} (175)

whenever the inequality

\max _{{1\leq i\leq m}}\mathrm{Re}\,\frac{-b_{i}}{B_{i}}<\min _{{1\leq i\leq m}}\mathrm{Re}\,\frac{1-a_{i}}{A_{i}} (176)

is fulfilled.

[124.3.1] The Laplace transform of an H-function is obtained from eq. (175) by using eq. (78). [124.3.2] One finds

\displaystyle{\mathcal{L}}\left\{ H^{{m,n}}_{{p,q}}(z)\right\}(u)=\int _{0}^{\infty}e^{{-ux}}H^{{m,n}}_{{p,q}}\left(x\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)\mbox{\rm d}x
\displaystyle=H^{{n+1,m}}_{{q,p+1}}\left(u\left|\begin{array}[]{l}{(1-b_{1}-B_{1},B_{1}),\ldots,(1-b_{q}-B_{q},B_{q})}\\
{(0,1)(1-a_{1}-A_{1},A_{1}),\ldots,(1-a_{p}-A_{p},A_{p})}\end{array}\right.\right)
\displaystyle=\frac{1}{u}H^{{m,n+1}}_{{p+1,q}}\left(\frac{1}{u}\left|\begin{array}[]{l}{(0,1)(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right) (177)

valid for \mathrm{Re}\, s>0, C>0, |\arg z|<\frac{1}{2}C\pi and \min _{{1\leq j\leq m}}\mathrm{Re}\,(b_{j}/B_{j})>-1.

[page 125, §1]   
[125.1.1] The definite integral found in [59, 2.25.2.2.]

\displaystyle\int _{0}^{y}x^{{\beta-1}}(y-x)^{{\gamma-1}}H^{{m,n}}_{{p,q}}\left(Cx^{\delta}(y-x)^{\eta}\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)\mbox{\rm d}x
\displaystyle=y^{{\beta+\gamma-1}}H^{{m,n+2}}_{{p+2,q+1}}\left(Cy^{{\delta+\eta}}\left|\begin{array}[]{l}{(1-\beta,\delta),(1-\gamma,\eta),(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q}),(1-\beta-\gamma,\delta+\eta)}\end{array}\right.\right) (178)

contains as a special case the fractional Riemann-Liouville integral [58, (2.7.13)]

\displaystyle\mbox{\rm I}^{{\alpha}}_{{0+}}H^{{m,n}}_{{p,q}}(y) \displaystyle=\frac{1}{\Gamma(\alpha)}\int _{0}^{y}(y-x)^{{\alpha-1}}H^{{m,n}}_{{p,q}}\left(x\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)\mbox{\rm d}x
\displaystyle=y^{\alpha}H^{{m,n+1}}_{{p+1,q+1}}\left(y\left|\begin{array}[]{l}{(0,1),(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q}),(-\alpha,1)}\end{array}\right.\right) (179)

valid if \min _{{1\leq j\leq m}}\mathrm{Re}\,(b_{j}/B_{j})>0. [125.1.2] The fractional Riemann-Liouville derivative is obtained from this formula by analytic continuation to \alpha<0.

4.4 Series Expansions

[125.2.1] The H-functions may be represented as the series [56, 57, 58, 59]

\displaystyle H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=\sum _{{i=1}}^{m}\sum _{{k=0}}^{\infty}c_{{ik}}\frac{(-1)^{k}}{k!B_{i}}z^{{(b_{i}+k)/B_{i}}} (180a)
where
\displaystyle c_{{ik}}=\frac{\displaystyle\prod^{m}_{{\substack{j=1\\
j\neq i}}}\Gamma(b_{j}-(b_{i}+k)B_{j}/B_{i})\prod^{n}_{{j=1}}\Gamma(1-a_{j}+(b_{i}+k)A_{j}/B_{i})}{\displaystyle\prod^{q}_{{j=m+1}}\Gamma(1-b_{j}+(b_{i}+k)B_{j}/B_{i})\prod^{p}_{{j=n+1}}\Gamma(a_{j}-(b_{i}+k)A_{j}/B_{i})} (180b)

whenever D\geq 0, {\mathcal{L}} is as in (158) or (159) and the poles in \mathbb{P}_{b} are simple. [125.2.2] Similarly

\displaystyle H^{{m,n}}_{{p,q}}\left(z\left|\begin{array}[]{l}{(a_{1},A_{1}),\ldots,(a_{p},A_{p})}\\
{(b_{1},B_{1}),\ldots,(b_{q},B_{q})}\end{array}\right.\right)=\sum _{{i=1}}^{n}\sum _{{k=0}}^{\infty}c_{{ik}}\frac{(-1)^{k}}{k!A_{i}}z^{{-(1-a_{i}+k)/A_{i}}} (181a)
[page 126, §0]    where
\displaystyle c_{{ik}}=\frac{\displaystyle\prod^{n}_{{\substack{j=1\\
j\neq i}}}\Gamma(1-a_{j}-(1-a_{i}+k)A_{j}/A_{i})\prod^{m}_{{j=1}}\Gamma(b_{j}+(1-a_{i}+k)B_{j}/A_{i})}{\displaystyle\prod^{p}_{{j=n+1}}\Gamma(a_{j}+(1-a_{i}+k)A_{j}/A_{i})\prod^{q}_{{j=m+1}}\Gamma(1-b_{j}-(1-a_{i}+k)B_{j}/A_{i})} (181b)

whenever D\leq 0, {\mathcal{L}} is as in (158) or (160) and the poles in \mathbb{P}_{a} are simple.