Fractional Calculus Functional analysis Mathematics

Convolution on Distribution Spaces Characterized by Regularization

T. Kleiner, R. Hilfer

Mathematische Nachrichten 296, 1938-1963 (2023)

submitted on
Friday, October 15, 2021

Locally convex convolutor spaces are studied which consist of those distributions that define a continuous convolution operator mapping from the space of test functions into a given locally convex lattice of measures. The convolutor spaces are endowed with the topology of uniform convergence on bounded sets. Their locally convex structure is characterized via regularization and function-valued seminorms under mild structural assumptions on the space of measures. Many recent generalizations of classical distribution spaces turn out to be special cases of the general convolutor spaces introduced here. Recent topological characterizations of convolutor spaces via regularization are extended and improved. A valuable property of the convolutor spaces in applications is that convolution of distributions inherits continuity properties from those of bilinear convolution mappings between the locally convex latti\-ces of measures.

For more information see