Categories
dielectric relaxation Disordered Systems electrical conductivity Heterogeneous Materials Percolation Transport Processes

Effective transport coefficients of anisotropic disordered materials

R. Hilfer, J. Hauskrecht

European Physical Journal B 95, 117 (2022)
https://doi.org/10.1140/epjb/s10051-022-00338-5

submitted on
Tuesday, January 4, 2022

A novel effective medium theory for homogenized transport coefficients of anisotropic mixtures of possibly anisotropic materials is developed. Existing theories for isotropic systems cannot be easily extended, because that would require geometric characterizations of anisotropic connectivity. In this work anisotropic connectivity is characterized by introducing a tensor that is constructed from a histogram of local percolating directions. The construction is inspired by local porosity theory. A large number of known and unknown generalized effective medium approximations for anisotropic media are obtained as limiting special cases from the new theory. Among these limiting cases the limit of strong cylindrical anisotropy is of particular interest. The parameter space of the generalized theory is explored, and the advanced results are applied to experiment.



For more information see

Categories
Disordered Systems Heterogeneous Materials Percolation Porous Media

Percolativity of Porous Media

R. Hilfer, J. Hauskrecht

Transport in Porous Media 145, 1-12 (2022)
https://doi.org/10.1007/s11242-021-01735-7

submitted on
Monday, April 19, 2021

Connectivity and connectedness are non-additive geometric functionals on the set of pore scale structures. They determine transport of mass, volume or momentum in porous media, because without connectivity there cannot be transport. Percolativity of porous media is introduced here as a geometric descriptor of connectivity, that can be computed from the pore scale and persists to the macroscale through a suitable upscaling limit. It is a measure that combines local percolation probabilities with a probability density of ratios of eigenvalues of the tensor of local percolating directions. Percolativity enters directly into generalized effective medium approximations. Predictions from these generalized effective medium approximations are found to be compatible with apparently anisotropic Archie correlations observed in experiment.



For more information see

Categories
Heterogeneous Materials Mathematical Physics Percolation Porous Media

Multiscale local porosity theory, weak limits, and dielectric response in composite and porous media

R. Hilfer

Journal of Mathematical Physics 59, 103511 (2018)
https://doi.org/10.1063/1.5063466

submitted on
Thursday, December 22, 2016

A mathematical scaling approach to macroscopic heterogeneity of composite and porous media is introduced. It is based on weak limits of uniformly bounded measurable functions. The limiting local porosity distributions, that were introduced in Advances in Chemical Physics, vol XCII, p. 299-424 (1996), are found to be related to Young measures of a weakly convergent sequence of local volume fractions. The Young measures determine frequency dependent complex dielectric functions of multiscale media within a generalized selfconsistent effective medium approximation. The approach separates scales by scale factor functions of regular variation. It renders upscaled results independent of the shape of averaging windows upon reaching the scaling limit.



For more information see

Categories
Heterogeneous Materials Porous Media Two-Phase Flow

Dimensional analysis and upscaling of two-phase flow in porous media with piecewise constant heterogeneities

R. Hilfer, R. Helmig

Advances in Water Resources 27, 1033 (2004)
https://doi.org/10.1016/j.advwatres.2004.07.003

submitted on
Monday, March 15, 2004

Dimensional analysis of the traditional equations of motion for two-phase flow in porous media allows to quantify the influence of heterogeneities. The heterogeneities are represented by position dependent capillary entry pressures and position dependent permeabilities. Dimensionless groups quantifying the influence of random heterogeneities are identified. For the case of heterogeneities with piecewise constant constitutive parameters (e.g. permeabilities, capillary pressures) we find that the upscaling ratio defined as the ratio of system size and the scale at which the constitutive parameters are known has to be smaller than the fluctuation strength of the heterogeneities defined e.g. as the ratio of the standard deviation to the mean value of a fluctuating quantity.



For more information see

Categories
dielectric relaxation diffusion electrical conductivity Heterogeneous Materials Porous Media

Quantitative comparison of meanfield mixing laws for conductivity and dielectric constant of porous media

R. Hilfer, J. Widjajakusuma, B. Biswal

Physica A 318, 319 (2003)
https://doi.org/10.1016/S0378-4371(02)01197-4

submitted on
Tuesday, June 4, 2002

Exact numerical solution of the electrostatic disordered potential problem is carried out for four fully discretised threedimensional experimental reconstructions of sedimentary rocks. The measured effective macroscopic dielectric constants and electrical conductivities are compared with parameterfree predictions from several mean field type theories. All these theories give agreeable results for low contrast between the media. Predictions from Local porosity theory, however, match for the entire range of contrast.



For more information see

Categories
dielectric relaxation electrical conductivity Heterogeneous Materials

Macroscopic Dielectric Constant for Microstructures of Sedimentary Rocks

R. Hilfer, J. Widjajakusuma, B. Biswal

Granular Matter 2, 137 (1999)
https://doi.org/10.1007/s100359900035

submitted on
Friday, May 21, 1999

An approximate method to calculate dielectric response and relaxation functions for water saturated sedimentary rocks is tested for realistic three-dimensional pore space images. The test is performed by comparing the prediction from the approximate method against the exact solution. The approximate method is based on image analysis and local porosity theory. An empirical rule for the specification of the length scale in local porosity theory is advanced. The results from the exact solution are compared to those obtained using local porosity theory and various other approximate mixing laws. The calculation based on local porosity theory is found to yield improved quantitative agreement with the exact result.



For more information see

Categories
dielectric relaxation diffusion electrical conductivity fluid flow Heterogeneous Materials Porous Media

Quantitative Prediction of Effective Material Properties of Heterogeneous Media

J. Widjajakusuma, B. Biswal, R. Hilfer

Computational Materials Science 16, 70 (1999)
https://doi.org/10.1016/S0927-0256(99)00047-6

submitted on
Thursday, October 8, 1998

Effective electrical conductivity and electrical permittivity of water-saturated natural sandstones are evaluated on the basis of local porosity theory (LPT). In contrast to earlier methods, which characterize the underlying microstructure only through the volume fraction, LPT incorporates geometric information about the stochastic microstructure in terms of local porosity distribution and local percolation probabilities. We compare the prediction of LPT and of traditional effective medium theory with the exact results. The exact results for the conductivity and permittivity are obtained by solving the microscopic mixed boundary value problem for the Maxwell equations in the quasistatic approximation. Contrary to the predictions from effective medium theory, the predictions of LPT are in better quantitative agreement with the exact results.



For more information see

Categories
Heterogeneous Materials Percolation Porous Media

Local Entropy Characterization of Correlated Random Microstructures

C. Andraud, A. Beghdadi, E. Haslund, R. Hilfer, J. Lafait, B. Virgin

Physica A 235, 307 (1997)
https://doi.org/10.1016/S0378-4371(96)00354-8

submitted on
Tuesday, August 13, 1996

A rigorous connection is established between the local porosity entropy introduced by Boger et al. (Physica A 187 (1992) 55) and the configurational entropy of Andraud et al. (Physica A 207 (1994) 208). These entropies were introduced as morphological descriptors derived from local volume fluctuations in arbitrary correlated microstructures occurring in porous media, composites or other heterogeneous systems. It is found that the entropy lengths at which the entropies assume an extremum become identical for high enough resolution of the underlying configurations. Several examples of porous and heterogeneous media are given which demonstrate the usefulness and importance of this morphological local entropy concept.



For more information see