Categories
Equilibrium Lattice Models Nonequilibrium Statistical Physics

Foundations of statistical mechanics for unstable interactions

R. Hilfer

Physical Review E 105, 024142 (2022)
https://doi.org/10.1103/PhysRevE.105.024142

submitted on
Thursday, May 27, 2021

Traditional Boltzmann-Gibbs statistical mechanics does not apply to systems with unstable interactions, because for such systems the conventional thermodynamic limit does not exist. In unstable systems the ground state energy does not have an additive lower bound, i.e., no lower bound linearly proportional to the number N of particles or degrees of freedom. In this article unstable systems are studied whose ground state energy is bounded below by a regularly varying function of N with index \sigma\geq 1. The index \sigma\geq 1 of regular variation introduces a classification with respect to stability. Stable interactions correspond to σ = 1. A simple example for an unstable system with σ =2 is an ideal gas with a nonvanishing constant two-body potential. The foundations of statistical physics are revisited, and generalized ensembles are introduced for unstable interactions in such a way that the thermodynamic limit exists. The extended ensembles are derived by identifying and postulating three basic properties as extended foundations for statistical mechanics: first, extensivity of thermodynamic systems, second, divisibility of equilibrium states, and third, statistical independence of isolated systems. The traditional Boltzmann-Gibbs postulate, resp. the hypothesis of equal a priori probabilities, is identified as a special case of the extended ensembles. Systems with unstable interactions are found to be thermodynamically normal and extensive. The formalism is applied to ideal gases with constant many-body potentials. The results show that, contrary to claims in the literature, stability of the interaction is not a necessary condition for the existence of a thermodynamic limit. As a second example the formalism is applied to the Curie-Weiss-Ising model with strong coupling. This model has index of stability σ = 2. Its thermodynamic potentials [originally obtained in R. Hilfer, Physica A 320, 429 (2003)] are confirmed up to a trivial energy shift. The strong coupling model shows a thermodynamic phase transition of order 1 representing a novel mean-field universality class. The disordered high temperature phase collapses into the ground state of the system. The metastable extension of the high temperature free energy to low temperatures ends at absolute zero in a phase transition of order 1/2. Between absolute zero and the critical temperature of the first order transition all fluctuations are absent.



For more information see

Categories
Critical phenomena Lattice Models Statistical Physics

Multicanonical Simulations of the Tails of the Order-Parameter Distribution of the two-dimensional Ising Model

R. Hilfer, B. Biswal, H.G. Mattutis, W. Janke

Computer Physics Communications 169, 230 (2005)
https://doi.org/10.1016/j.cpc.2005.03.053

submitted on
Saturday, April 9, 2005

We report multicanonical Monte Carlo simulations of the tails of the order-parameter distribution of the two-dimensional Ising model for fixed boundary conditions. Clear numerical evidence for “fat” stretched exponential tails is found below the critical temperature, indicating the possible presence of fat tails at the critical temperature.



For more information see

Categories
Critical phenomena Lattice Models Statistical Physics

Multicanonical Monte-Carlo Study and Analysis of Tails for the Order-Parameter Distribution of the Two-Dimensional Ising Model

R. Hilfer, B. Biswal, H.G. Mattutis, W. Janke

Physical Review E 68, 046123 (2003)
https://doi.org/10.1103/PhysRevE.68.046123

submitted on
Monday, February 10, 2003

The tails of the critical order-parameter distribution of the two-dimensional Ising model are investigated through extensive multicanonical Monte Carlo simulations. Results for fixed boundary conditions are reported here, and compared with known results for periodic boundary conditions. Clear numerical evidence for ‘‘fat’’ stretched exponential tails exists below the critical temperature, indicating the possible presence of fat tails at the critical temperature. Our work suggests that the true order-parameter distribution at the critical temperature must be considered to be unknown at present.



For more information see

Categories
Critical phenomena Lattice Models Statistical Physics

Thermodynamic potentials for the infinite range Ising model with strong coupling

R. Hilfer

Physica A 320, 429 (2003)
https://doi.org/10.1016/S0378-4371(02)01585-6

submitted on
Monday, September 30, 2002

The specific Gibbs free energy has been calculated for the infinite range Ising model with fixed and finite interaction strength. The model shows a temperature driven first-order phase transition that differs from the infinite ranged Ising model with weak coupling. In the temperature-field phase diagram the strong coupling model shows a line of first-order phase transitions that does not end in a critical point.



For more information see

Categories
image analysis Lattice Models Porous Media

Erosion-Dilation Analysis for Experimental and Synthetic Microstructures of Sedimentary Rock

A. Tscheschel, D. Stoyan, R. Hilfer

Physica A 284, 46 (2000)
https://doi.org/10.1016/S0378-4371(00)00116-3

submitted on
Thursday, February 17, 2000

Microstructures such as rock samples or simulated structures can be described and characterized by means of ideas of spatial statistics and mathematical morphology. A powerful approach is to transform a given 3D structure by operations of mathematical morphology such as dilation and erosion. This leads to families of structures, for which various characteristics can be determined, for example, porosity, specific connectivity number or correlation and connectivity functions. An application of this idea leads to a clear discrimination between a sample of Fontainebleau sandstone and two simulated samples.



For more information see

Categories
Lattice Models Nonequilibrium Simulations Stochastic Processes

Statistical Prediction of Corrosion Front Penetration

T. Johnsen, R. Hilfer

Phys.Rev. E 55, 5433 (1997)
https://doi.org/10.1103/PhysRevE.55.5433

submitted on
Wednesday, September 18, 1996

A statistical method to predict the stochastic evolution of corrosion fronts has been developed. The method is based on recording material loss and maximum front depth. In this paper we introduce the method and test its applicability. In the absence of experimental data we use simulation data from a three-dimensional corrosion model for this test. The corrosion model simulates localized breakdown of a protective oxide layer, hydrolysis of corrosion product and repassivation of the exposed surface. In the long time limit of the model, pits tend to coalesce. For different model parameters the model reproduces corrosion patterns observed in experiment. The statistical prediction method is based in the theory of stochastic processes. It allows the estimation of conditional probability densities for penetration depth, pitting factor, residual lifetimes, and corrosion rates which are of technological interest.



For more information see

Categories
Lattice Models Statistical Physics

Analysis of Multilayer Adsorption Models without Screening

R. Hilfer, J.-S. Wang

Journal of Physics A: Mathematical and General 24, L389 (1991)
10.1088/0305-4470/24/7/013

submitted on
Tuesday, February 5, 1991

A class of recently introduced irreversible multilayer adsorption models without screening is analysed. The basic kinetic process of these models leads to power law behaviour for the decay of the jamming coverage as a function of height. We find the exact value for the power law exponent. An approximate analytical treatment of these models and previous Monte Carlo simulations are found to be in good agreement.



For more information see

Categories
Disordered Systems Lattice Models Transport Processes

Correlation Effects on Hopping Transport in a Disordered Medium

R. Hilfer

in: Dynamical Processes in Condensed Molecular Systems
edited by: A. Blumen and J. Klafter and D. Haarer
World Scientific Publ.Co., Singapore, 302 (1990)
https://doi.org/10.1142/9789814540261
ISBN: 978-981-4540-26-1

submitted on
Monday, April 23, 1990

Correlated hopping transport through a disordered system is discussed in terms of a random walk model with memory correlations on a bond disordered lattice. Correlations will in general result in a difference between the transition rate to the previously occupied site and the rate for transitions to any other nearest neighbour site. Such a correlated process corresponds exactly to Fürth’s model for a random walk with a finite memory. This paper establishes a first order master equation for Fürth’s random walk on a bond disordered lattice. The equation is found to be equivalent to a symmetrized second order equation which was used previously as the starting point for an effective medium treatment.



For more information see

Categories
Disordered Systems electrical conductivity Lattice Models Nonequilibrium Percolation Statistical Physics Transport Processes

Correlated Random Walks in Dynamically Disordered Systems

R. Hilfer, R. Orbach

in: Dynamical Processes in Condensed Molecular Systems
edited by: J. Klafter and J. Jortner and A. Blumen
World Scientific Publ.Co., Singapore, 175 (1989)
https://doi.org/10.1142/9789814434379_0009
ISBN: 978-981-4434-37-9

submitted on
Tuesday, November 22, 1988

We discuss correlated hopping motion in a dynamically disordered environment. Particles of type A with one hopping rate diffuse in a background of B-particles with a different hopping rate. Double occupancy of sites is forbidden. Without correlations the limit in which the ratio of hopping rates diverges corresponds to diffusion on a percolating network, while the case of equal hopping rates is that of self-diffusion in a lattice gas. We consider also the effect of correlations. In general these will change the transition rate of the A-particle to the previously occupied site as compared to the rate for transitions to all other neighbouring sites. We calculate the frequency dependent conductivity for this model with arbitrary ratio of hopping rates and correlation strength. Results are reported for the two dimensional hexagonal lattice and the three dimensional face centered cubic lattice. We obtain our results from a generalization of the effective medium approximation for frozen percolating networks. We predict the appearance of new features in real and imaginary part of the conductivity as a result of correlations. Crossover behaviour resulting from the combined effect of disorder and correlations leads to apparent power laws over roughly one to two decades in frequency. In addition we find a crossover between a low frequency regime where the response is governed by the rearrangements in the geometry and a high frequency regime where the geometry appears frozen. We calculate the correlation factor for the d.c. limit and check our results against Monte Carlo simulations on the hexagonal and face centered cubic lattices. In all cases we find good agreement.



For more information see

Categories
Disordered Systems Lattice Models Renormalisation Stochastic Processes

Fluctuation-Dissipation on Fractals: A Probabilistic Approach

R. Hilfer, A. Blumen

in: Time Dependent Effects in Disordered Materials
edited by: R.Pynn and T. Riste
Plenum Press, New York, 217 (1987)

submitted on
Tuesday, March 31, 1987

The analogies between the diffusion problem and the resistor network problem as witnessed by the Einstein relation have been very important for analytical and numerical investigations of linear problems in disordered geometries (e.g. percolating clusters). This raises the question whether the resistor problem can be identified in a purely probabilistic context. An affirmative answer has recently been given and it was shown that the Einstein relation follows from a simple probabilistic argument. Here we present the results of a more general treatment.



For more information see

Categories
Disordered Systems Fractals Lattice Models Renormalisation Stochastic Processes

Renormalisation Group Approach in the Theory of Disordered Systems

R. Hilfer

Verlag Harri Deutsch, Frankfurt, 1986
ISBN-10: 3871449792, ISBN-13: 978-3871449796

submitted on
Wednesday, July 23, 1986



For more information see

Categories
Fractals Lattice Models Renormalisation Stochastic Processes

On Finitely Ramified Fractals and Their Extensions

R. Hilfer, A. Blumen

in: Fractals in Physics
edited by: L. Pietronero and E. Tosatti
Elsevier Publishing Co., Amsterdam, 33 (1986)

submitted on
Thursday, July 11, 1985

We construct deterministic fractal lattices using generators with tetrahedral symmetry. From the corresponding master equation we determine the spectral dimension d and prove that d<2. Furthermore we extend our set of fractals (with d dense in [1,2]) by direct multiplication, thus obtaining fractals whose d are dense for all real numbers larger than or equal to 1 .



For more information see

Categories
Critical phenomena Disordered Systems Fractals Lattice Models Random Walks Renormalisation Stochastic Processes

Renormalisation on Symmetric Fractals

R. Hilfer, A. Blumen

J.Phys.A: Math. Gen. 17, L783 (1984)
https://doi.org/10.1088/0305-4470/17/14/011

submitted on
Monday, July 9, 1984

We introduce and investigate new classes of Sierpinski-type fractals. We determine their fractal and spectral dimensions using renormalisation procedures and, for particular classes, we give these dimensions in closed form. The spectral dimensions densely fill the interval [1,2], allowing us to choose flexibly models for applications.



For more information see

Categories
Disordered Systems Fractals Lattice Models Renormalisation Stochastic Processes

Renormalisation on Sierpinski-type Fractals

R. Hilfer, A. Blumen

Journal of Physics A: Mathematical and General 17, L573-L545 (1984)
10.1088/0305-4470/17/10/004

submitted on
Friday, April 13, 1984

We present a family of deterministic fractals which generalise the d-dimensional Sierpinski gaskets and we establish their order of ramification and their fractal and spectral dimensions. Random walks on these fractals are renormalisable and lead to rational, not necessarily polynomial, mappings.



For more information see